
Real-Time in Plan 9: a short Overview

Pierre G. Jansen Sape Mullender
University of Twente Lucent Technologies

PB 217, 7500 AE Enschede Bell Laboratories Murray Hill, NJ 07974
Netherlands United States

jansen@cs.utwente.nl sape@plan9.bell-labs.com

April 14, 2003

Abstract

When shared resources are involved, scheduling in current hard real-time operating
systems, too often has its timely behaviour guaranteed at the cost of a rather compli-
cated administration. We will show that we can improve this considerably by using
methods based on so-called Real-Time Transactions (RTTs). A RTT is a task that has
guaranteed the use of all needed resources after it has started, without ever having to
wait for the resources’ release; an RTT is only started if these resources are free. RTTs
allow for a complete separation of a real-time application and its involved system sup-
port. Scheduling, (shared) resource synchronisation and admission control is executed
automatically by the underlying system, while an application programmer only needs
to specify timing constraints (deadline, period, runtime) and resource needs. We will
discuss the implementation of RTTs within Plan 9 as used at Bell-labs, and we will
illustrate the straightforward and elegant use of our transaction scheduling theory. 1.

Keywords: transactions, inheritance, schedulability, run-to-completion semantics

1 Introduction

Embedded systems have become an important part of all the ubiquitous computers found in
our every day environment. These systems span a wide variety of different tasks, from simple
to very complex; they may house appliances for control such as in our cars, communication
for hand-helds and support for multimedia, all requiring some form of timely behaviour.
Embedded system are controlled by computer systems running general purpose operating
systems when possible or real-time operating systems when needed.

In this article we describe the metamorphosis of the general purpose operating system
Plan 9 [6] to a real-time operating system. Although other operating systems may also have
real-time support, we believe there are only few general purpose operating systems with a
comparable native support for real-time (RT) applications.

1This research is sponsored by the IBM Equinox Grant.

1



Plan 9 is relatively little known and has but a small user community (a few thousand
installations). Nevertheless, it is a complete operating system and it is the only operating
system booted by many of its users. Plan 9 is also used in several embedded environments.

The background theory we use for the real-time metamorphosis of Plan 9 can be used
for any other operating system. In this article we present basic strategies for scheduling
real-time tasks running on a single processor. This theory is based on so called transactions
as introduced in [4]. Transactions present a simple model for RT activity and they will be
explained in detail. A transaction’s main characteristic is that it may only start whenever
all resources it needs during runtime are free. Consequently a started transaction never has
to wait for a resource in use. An important consequence is that transitive waiting and hence
deadlocks will be avoided. The use of transactions makes scheduling theory comprehensible
and simplifies the basic scheduling protocols and feasibility analyses to elegant and light-
weight algorithms. Transactions can be used to extend Rate Monotonic (RM), Deadline
Monotonic (DM) [1], Stack Resource (SR) [2], and/or Earliest Deadline First (EDF) [5]
protocols.

In the current context we confine ourselves to an adapted EDF protocol that can handle
the use of shared resources on basis of static deadline inheritance, similar to the static
priority inheritance used in the Priority Ceiling (PC) protocol [7]. We call our adapted
version the EDF Inheritance (EDFI) protocol. EDFI allows for the a simple specification
on application level of a RT task. Feasibility analyses of the task set and admission control
can be done automatically. Scheduling and synchronisation of task is completely handled
at system level. EDFI has been chosen to enhance the real-time version of Plan 9.

Transactions hold their needed resources during the course of their activity (including
preemption). This can prevent preemption of higher priority tasks if during the course of
activity the resources are only needed part time. Part time resources are only used during a
predefined amount of time which must be specified on beforehand by the application. If part
time resources are claimed and released in a nested way, equal to the nested critical sections
in other protocols (like the Priority Ceiling protocol) , then EDFI holds its attractive
properties. In the subsequent sections, we shall describe our system and present main parts
of the theory behind it.

2 Conclusion

The real time scheduler is installed in the currently distributed version of Plan 9 (obtainable
through plan9.bell-labs.com). It has already been used in several applications, one of
them an experimental wireless base station.

Discussions about whether or not to include support for resource sharing in our real-
time scheduler was won by the resource-sharing camp when the algorithms presented here
emerged: the schedulability test is not overly complicated and the run-time complexity is
practically O(1): only the queue insertions are not constant-time operations, but the queues
are invariably very short. In addition, the scheduler prevents resource contention from
causing gratuitous context switches and it is completely deadlock free. Finally, the same
scheduler can trivially be used for preemptive or non-preemptive real-time EDF scheduling.

2



One real-time application we built has nothing but shared resources: the Clockwise [3]
mixed-media file system has many real-time processes with varying periods and costs sharing
disks. As it turned out, scheduling the disks was much more important than scheduling the
CPU. The disk scheduling and its feasibility analyses could be handled with exactly the
same algorithms as those for processor scheduling by treating the disk as a single resource,
shared by every distinguished task that uses it.

The combination of EDFI and Plan 9 has shown to be a successful one. We believe that
EDFI should be used one more platforms.

References

[1] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard Real-Time
Scheduling: The Deadline Monotonic Approach. In Proceedings 8th IEEE Workshop on
Real-Time Operating Systems and Software, Atalanta, 1991.

[2] T. P. Baker. A stack-based resource allocation policy for realtime. In Proceedings:
Real-Time Systems Symposium, pages 191–200. IEEE Computer Society Press, 1990.

[3] P. Bosch, S. J. Mullender, and P. G. Jansen. Clockwise: A Mixed-Media file system.
In IEEE Int. Conf. on Multimedia Computing and Systems (ICMCS), volume II, pages
277–281, Firenze, Italy, Jun 1999. IEEE Computer Society Press, Los Alamitos, Cali-
fornia. http:// www.cwi.nl/ ~peterb/ papers/ icmcs99.ps.gz.

[4] P. G. Jansen and R. Laan. Scheduling techniques and quality of service of real-time
kernels. Technical report TR-CTIT-98-05, Centre for Telematics and Information Tech-
nology, Univ. of Twente, The Netherlands, Feb 1998.

[5] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[6] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard
Trickey, and Phil Winterbottom. Plan 9 from Bell Labs. Computing Systems, 8(3):221–
254, Summer 1995.

[7] L. Sha, R. Rajkumar, S. H. Son, and C. H. Chang. A real-time locking protocol. IEEE
Transactions on computers, 40(7), July 1991.

3


