Lightweight EDF Scheduling with Deadline
Inheritance

Pierre G. Jansen, Sape J. Mullender, Paul J.M. Havinga, Hans Scholten
jansen,havinga,scholten@cs.utwente.nl, sape@plan9.bell-labs.com

May 9, 2003

Abstract

EDFI is a lightweight real-time scheduling protocol that combines
EDF with deadline inheritance over shared resources. We will show
that EDFT is flexible during a task’s admission control, efficient with
scheduling and dispatching, and straightforward in feasibility analy-
sis. The application programmer only needs to specify a task’s timing
constraints (deadline, period, runtime) and resource needs, after which
EDFI can execute admission control, scheduling, dispatching and re-
source synchronisation automatically. EDFI avoids gratuitous task
switching and its programming overhead as well as runtime overhead
is very low, which makes it ideal for lightweight and featherweight ker-
nels. We will illustrate the elegance of the underlying theory and we
will shortly discuss the implementation of EDFT in three different op-
erating systems’.

Keywords: preemption, deadline inheritance, feasibility analysis, run-to-
completion semantics

1 Introduction

In many embedded systems, applications have hard real-time (RT) require-
ments while others are soft RT or can be best effort. Soft RT or best
effort systems are not good at guaranteeing deadlines while hard RT sys-
tems are. Various attempts have been made to introduce RT schedulers to
general-purpose operating systems. Most of these systems cannot give hard
RT guarantees when shared resource are used, because the required mecha-
nisms are too complex in terms of needed code or required system state. In
general, a rather complex feasibility analysis is needed to determine whether

!This research is sponsored by the IBM Equinox Programme and by the EU project
Eyes, IST 2001-34734.

a set of task can meet deadlines beforehand. This analysis can be done in a
rigid way by pre-executing a static schedule that is executed by a dispatcher,
or it can be done in a flexible way by letting the dispatcher decide dynam-
ically to derive scheduling decisions. Dynamic scheduling is more flexible
but in general more expensive in terms of computing time.

We propose a dynamic scheduler to be used with on-line feasibility anal-
ysis. Our analysis is simple enough to be executed on-line — outside the
real-time time budget — to handle admission control of new tasks in a pre-
cise and flexible way. We allow shared resources, with a minimum of needed
code and memory usage. We keep the feasibility analysis outside the RT
timing budget, because the analysis itself does not take advantage from a
fixed deadline. If system resources, in particular memory, are very scarce it
is better to do the analysis off-line.

In this paper we present a new scheduling and dispatching technique for
real-time support in operating systems, which range from normal to feath-
erweight. Our scheduling method is based on preemptive Earliest Deadline
First (EDF), as first introduced by Liu & Layland [1], in a context where
shared resources can be used under mutual exclusion. This, in general,
complicates scheduling, resource synchronisation and switching and con-
fronts the application programmer with a rather complicated environment.
We will tame this complexity with the EDFI approach as described in the
following.

Under the EDFT protocol we propose to combine preemptive EDF with
deadline inheritance over shared resources. EDFI can manage scheduling
and dispatching very efficiently. It uses very little system code and process-
ing overhead and it hardly needs additional memory (RAM). Therefore it is
suitable for feather-light micro kernels. EDFI allows for a straightforward
feasibility analysis, which is derived from an elegant underlying mathemat-
ical model, which results from the introduction of inherited deadlines under
EDF. A consequence of this straightforward analysis is that it is practical to
do admission control on-line. This offers a service in which admission con-
trol, based on feasibility can flexibly allow or reject new or changed tasks.
Moreover, process switching is limited to a minimum, while mutual exclusion
of shared resources is granted at system level so that the programmer does
not need to take care of synchronisation: processes are simply not scheduled
by the system when there is a potential resource conflict.

We have integrated this technique in a few operating systems, namely
RT-Linux, in Plan 9 and in a tiny operating system called “Real-Time eYes”
(RTY), which we use for radio connected sensor networks. Although other
operating systems may also have RT support, we believe there is no other
operating system with a comparable native support for RT applications that
is so light weight as our scheduler and dispatcher.

In the subsequent sections, we shall describe our system and the theory
behind it, omitting, for lack of space detailed proofs. In section 4 we shortly

Table 1: Specification of {2y

N | D | T | G
T1 3 4 1
5 | 5 8 1
|6 | 102
s |9 15 | 4

describe our experiments with RT-Linux, Plan 9 and RTY. For a more formal
introduction, see Jansen & Laan [2].

2 Theory

A task set § consists of a set of preemptable tasks 7; (i = 1...n). Each
task 7; is specified by a period T;, a deadline D;, a cost C;, and a resources
specification p;. 1t is released every T; time units and must be able to
consume at most C; seconds of CPU time before reaching its deadline D;
seconds after release (C; <= D; <= T;). We use capital letters for time
intervals (e.g., T, D, C') and lower case for absolute ‘points in time’: r for
the next release time, d for the next deadline.

The wutilisation U of Q is defined as U = Y1, C;/T;. For Q to be
schedulable, U <= 1 must hold. We define two functions, processor demand
H(t), introduced by Baruah et al” [3], and workload W (t), introduced by
Audsley et al”[4]. H(t) represents the total amount of CPU time that must
be available between 0 and ¢ for 2 to be schedulable. W () represents the
cumulative amount of CPU time that is consumable by all task releases
between time 0 and t.

K3 3

Figure 1 illustrates the functions for an example task set. Our feasibility
analyses is based on the behaviour of H(t) and W (¢) and on the observations
earlier proved by Baruah et al” [3]:

“If for any interval with length L, all work load offered during
[0, L] can be resolved before or at L, then this can be concluded
for any arbitrary time interval [t,¢ + L].”

Therefore all tasks in €2 are released simultaneously at ¢ = 0, in which case
they will produce the largest response time. If the tasks in €2 can make their
deadlines from t = 0, they can make their deadlines from any point in time.

Figure 1 shows the functions H(t) and W (t). Both are used for schedu-
lability analysis of the task set 2. Note that the vertical distance between

15 | i

L /1
————— |
P
L. B
i
W(t) b i
pomeme . N
10 | ! | !
! ’ :
[rmrm 1 P 1
i !
U //lH(t)
s I
7/ H
. i
. :
5 | A !
. ;
7/ 1
B -
4 H
7/ 1
g 0
-_ 7/ 1
7/ —————
o L- i
0 iime 10 15

nfe 4t 4t bt
1, f1o ! t |
1 f20 } t
14 f40 } t

de—

Figure 1: Example task set and its EDF schedule with processor demand
H(t) and workload functions W (t).

W (t) and the diagonal in the graph represents the amount of work still to
do in released tasks. At point L, there is no more work to do and the system
becomes idle. H (t) represents the amount of work that must be finished. If
H(t) crosses the diagonal, then more work would have to be finished than
there is time available. The schedulability analysis tracks W (t) and H ()
until either W (t) touches the diagonal or H () crosses it. If H(t) crosses the
diagonal, the task set is not schedulable. If W (t) touches before H(t) could
cross, the task set is schedulable. The example task set 2 is thus schedula-
ble. Task sets can be constructed in which neither W (¢) nor H(t) reaches
the diagonal. The schedulability analysis, therefore, traces these functions
for only a predetermined maximum number of steps and rejects a task set
if this maximum is reached.

The scheduler manages the set of admitted tasks using two queues and
a stack. The Wait Queue, holds tasks awaiting their release. When a task
gives up the processor or reaches its deadline, it is put on this queue, from
which it will be transferred to the next queue when it is released. The
Released Queue holds processes that have been released but have not yet

waiting

released queue

preemption stack event

event waiting set

Figure 2: Transaction system: released queue, preemption stack and event
waiting queue

run. This queue is maintained in deadline order, earliest deadline first. The
Run Stack holds the tasks that have already run; the currently running task
is at the top of the stack and the tasks below it were preempted by the tasks
immediately above them.

The Release Timer goes off when a task in the Wait Queue needs to be
released. Released tasks are then transferred to the Released Queue. When
a task gets to the front of the Released Queue or when a task is popped
from the Run Stack, the deadlines of the task 7, at the head of the Released
Queue and the running task at the top of the Stack 7, are compared. If
dy, < d,., 13, is removed from its queue and pushed onto the Run Stack. If
both Run Stack and Released Queue are empty, best effort processes are
scheduled.

Nested Critical Sections (NCSs) [5] can be used in tasks for the use of
shared resources. What we need to do is to specify NCSs and their durations.
NCSs in combination with inheritance have been used in other protocols such
as the well-known Priority Ceiling (PC) protocol [6] and the Stack Resource
protocol [7]. An in-depth overview is given by Rajkumar [8]. Sha et al" [9]
give an overview of how to generalise PC for DM under blocking and they
present how to use this protocol for a practical system implementation. The
protocol we present in this chapter has similarities with PC and SR. PC is
from the class of fixed priority protocols while SR belongs to the class of

Table 2: Specification of {29

Qo | D; | T; | Ci | ps

|4 |5 |1 [09{aB}

|5 |8 |1 |08{a02{B0.1{C}}}
|6 (102 [02{b}L7{cL3{b}
w19 |9 |3 |18{ac}

dynamic priority protocols.
A resource specification p of a task 7 is specified according to the follow-
ing syntax:

Plist - ﬂoat 7{7 Rlist Plist 7}7 ‘ €
Rlist : Rlist R | €

R: ‘@ ...%2 |‘A...‘7

float : floating-point number

in which the non-capital resource R indicates a read access to a shared
resource, while a capital resource R indicates an exclusive-access to it. An
example of a task set with a resource specification is given in table 2.

Task 1 has a period of 5 seconds, a deadline of 4 seconds (if it is released
at t, its deadline is at ¢ + 4 and its next release is at ¢t 4+ 5; it needs at most
1 second of CPU time between release and deadline. Resource a is shared
by tasks 1, 2 and 4. All tasks only require read access to the resource, so no
restrictions on the schedulability of these tasks exist. Resource b/B is shared
by tasks 1, 2 and 3. Task 1 needs exclusive access to B for 0.9 time units,
it also holds read resource a. Task 3 needs shared-read access to resource b
for 0.2 time units and again for 0.13 time units while holding resource ¢ for
1.7 time units.

The principle behind scheduling a task set with shared resources is that
a released tasks stays on the Released Queue if it needs resources that are
already in use by one of the task in the Run Stack, even if such a released
task has a shorter deadline. Therefore, once a task 7, is on the Run Stack, it
will never claim a resource already held by another, preempted, task. Such
a task 7. would simply not have been scheduled.

We enforce this by deadline inheritance, which is similar to Priority
Inheritance, introduced by Sha et al” [6]. Every resource, R is assigned
an inherited deadline Dr = min,co{D; | R € p;}, the minimum of the
deadline of all tasks using R, where p; denotes the set of tasks in use by task
7;. If pl C p; denotes the subset of resources in use by 7;, then the inherited
deadline of 7; is A} = mingpc ,3{Ar}. The minimal inherited deadline of 7;
is reached if all resources are used: A; = min e, {ARr}. A task’s A’ thus
changes as the task acquires and releases resources.

d,D,A

\/No

74,4

N
N

A
N\
86,5
A
9

9>7-> waiting

10,9,

Figure 3: Example Run Stack (rectangles) and Released Queue (ellipses);
the arrows indicate the partial order between the parameters. No preemp-
tion is allowed because D), < A]. (9 < 7) is not true.

Each released task is now characterised by the triple d, D, A’, where d is
the current absolute deadline.

Earlier, we presented the EDF scheduling rule that the task 7, at the
head of the Released Queue would move to the top of the Run Stack if its
dy, was less than d,. of the task 7. on top of the Run Stack. A released task
with an earliest deadline will preempt the currently running task. Now we
modify that rule to:

7, preempts 7, iff d, < d, A D, < Al

Figure 3 shows an example Run Stack (rectangles) and Released Queue
(ellipses). At this time, the task at the head of the Released Queue may not
preempt the one on top of the Run Stack because (9 < 7A3 < 4 is false). For
every task 7;, A’; <= D; and, because of the scheduling rule, for a task 7
higher on the Run Stack than another task 7, D}, < Aj. There is, therefore,
a total ordering from D to A’ to D, etc. up and down the Run Stack. This
is indicated by the arrows in figure 3. This ordering, plus the definition of
A, establishes the property that the currently running task, which is at the
top of the Run Stack, will not attempt to acquire any resources held by
preempted tasks, which are further down in the Run Stack. This is because,
if they held such resources, their A would be less than or equal to the D of
the running task and this the scheduler does not allow.

A second property is that there is no transitive blocking, because a pro-
cess that is blocked due to shared resource usage only has to wait for this
only blocker to release the resource. Stated more formally, task 7, at the
head of the Released Queue is blocked by 75 on the Run Stack despite hav-
ing a higher priority (d;, < ds) because Dj, > Dy prevents the preemption
of 75. It can be proved that under these circumstances A, < Dj < D;.
Due to the full ordering property of D’s and A’s on the stack the number of

blockers has a maximum of 1. This is also a property of the Priority Ceiling
protocol [6], the first protocol that to introduce static priority inheritance,
similar to our static deadline inheritance.

The schedulability analysis is only moderately more complex with re-
source sharing. The processor demand and workload functions do not change,
because the work that needs to be done and when it needs to be done is the
same. But we do have to take into account now that one task, not more,
may block another’s access to the CPU. To illustrate the process, we use the
same specification as the one given before, this time in a more convenient
mathematical notation, in table 3. Blocking can be represented graphically
by adding spikes at time ¢ to the processor demand function, as illustrated
in figure 4.

The height of a spike is the result of calculating the blocking times of a
maximum blocker from the resource specification: at t = 4, 71 reaches its
deadline. Before reaching the deadline, it may have been prevented from
being scheduled by a task with a longer deadline, but holding a resource
that 71 might need. For 71, the amount of slack in the schedule needed is
1.3 time units, because that is how long 73 might hold resource b. Similarly,
at t = 5, 7 needs 1.8 time units of slack to compensate for 74, which
might hold resource ¢, preventing 7 from being scheduled. The maximum
potential blocking is given by Cp(t) = maxo{C., | AL, <t < D;} where
7' is a nested critical section, C” its cost, A, its inherited level and t is
the length of the interval over which blocking has to be computed. The new
admission rule calculates these potential blockings as spikes on the processor
demand function at the expiration times of deadlines and declares a task set
inadmissible if one of the spikes crosses the diagonal. If there are no shared
resources, there is no blocking (there are no spikes), and the schedulability
test reduces to the normal preemptive-EDF schedulability test. If there is
one resource, shared full-time by all tasks, the schedulability test reduces
to the non-preemptive schedulability test. This schedulability test spans
the range between the extremes of completely preemptive and completely
non-preemptive scheduling.

A more formal consideration for feasibility analyses under EDF with
deadline inheritance is given in Jansen & Laan [2].

Table 3: The As are converted to tuples consisting of inherited deadline and

usage time.
Q| D, | T; | C; | resources — As
|4 |5 |1 [09{aB} — (40.9)
5 |8 |1 [08{a02{B0.1{C}}} — (0,0.8)(4,0.2)(50.1)
7316 [10]2 | 02{b}17{c13{b}} — (4,0.2)(5,1.7)(4,1.3)
w19 |9 |3 |18 ac}—(5118)

10 |

s
1 7
W(t) L i~
[remme / - : -
//]
5 T :
;7 !
3 7 TT...:
o y i
// _.._: H(t)
0 i T T
0 time > 10

1 Ho ‘|t ‘4
T, {10 'y
13 f20 b f

1, fa0 ¥ !

Figure 4: Qs is feasible under EDF with nested critical sections

3 Application interface

Our RT scheduler only needs a small amount of dynamic memory space.
Feasibility analyses can be carried out off-line and outside the kernel so
that they do not burden the kernel’s limited resources too much. After an
analysis has been successfully carried out, the task set can be loaded on
the target processor and run. Its original task specification with shared
resources has automatically been converted to one in which the A tuples
replace the shared resource specification, as exemplified in table 3.

After the specification of a task set only very little additional work is
needed at the application level. A task can only block before it starts running
while a running task may always enter a critical section undisturbed and
start using its resources. On entering a critical section the application must
notice the system, which section is entered so that the system can adapt
the A level. On leaving the critical section the system is again notified
and it will restore the previous value of Al. Of course the duration of the
critical section may not exceed it specified length. This can be checked
automatically by a timer.

Note that at application level no semaphores are needed to force syn-
chronisation because no blocking is possible while running. Also blocking
before running is limited since the number of running blockers for the task
at top of the Released Queue is at most one. Deadlock cannot occur.

It is possible to specify tasks as so called RT transactions, which have
only one critical section with runtime length. Then, all synchronisation can
be done by the scheduler itself. An example is given in table 4 and we refer
to these types of tasks as RT transactions. In such a case the inherited
deadline A will not change during runtime and therefore synchronisation
can be fully handled by the scheduler. No synchronisation is needed from
the user, preemption, scheduling mutual exclusion of shared resources and
resource synchronisation is completely done at system level, while the ap-
plication programmer does not need to be aware of this and may think in
terms of a ‘run-to-completion’ model.

Table 4: Conversion of resources to inherited deadlines for RT transactions

Q| D; | T; | C; | resources — As
nl|4 |5 |1 |{aB}—(41)
|5 |8 |1 |1{aBC}— (41)
7316 [10]2 [2{bc}— (42)
7219 |9 |3 |3{ac}t—(53)

10

4 Tools and implementation

We have developed a testing tool for feasibility analysis and offer a graphical
web interface [10] for off-line feasibility analysis. This analysis is suitable for
our EDF model with nested critical sections. It asks as input a task specifi-
cation according to table 2 and it produces a graphical output according to
figure 4. The tool can also handle analysis of resource using task sets sched-
uled with other protocols like Rate Monotonic [1], Deadline Monotonic [4]
and the Stack Resource protocol [7]. These protocols are beyond the scope
of this paper.

Currently we have three EDFI implementations: in Linux-RT, in Plan 9
and in RTY. They have in common that one timer controls the RT portion
of the scheduler: the Release Timer goes off when a task in the Wait Queue
must be released. If that task gets to the front of the Release Queue, a
scheduling decision is made, otherwise, the current task continues running:
7, preempts 7, iff dp < d. A D < Al according to scheduling condition
given earlier. When the Deadline Timer goes off, the running task has used
up its quantum and the processor is taken away from it until the next release.
We also raise an exception in the process.

RT-Linux

Our first target for scheduling according to the principles as described in
this paper was RT-Linux [11], and Linux RTAI [12]. The existing scheduler
could easily be replaced by ours. Scheduling overhead was mainly due to the
ordering of tasks in the Ready Queue and it turned out to be in the order
of some percent of the time needed for switching a tasks; the main overhead
was due to task switching.

Plan 9

Our second target was Plan 9, which needed to be adapted from a general-
purpose distributed operating system to a kernel for RT applications. We
implemented the scheduler in Plan 9. This was a fairly straightforward
process, although we had to change the behaviour of spin locks in the kernel
slightly. A process is now allowed to finish its critical section before being
subject to scheduling. None of the spin locks hold the CPU longer than
about 50us and they are small enough to be disregarded by the scheduler.
The interesting part about the implementation is the use of a file system
to control the system. In the default mount point of /dev/realtime we find
three files, clone, resources, time, and a directory: task. Existing tasks
are represented by files (whose names are numbers) in the task directory.
A new task is created by opening the file clone, which then behaves like the
corresponding (new) file in the task directory. The main loop for a typical

11

real-time process looks as follows:

char *clonedev = "/dev/realtime/clone";
void
processvideo(void){

int fd;

fd = open(clonedev, ORDWR);

if (fprint(fd, "T=33ms D=20ms C=8ms procs=self admit") < 0)
sysfatal("%s: admission: %r", clonedev);

while (processframe())
fprint(£d, "yield");

fprint (fd, "remove");

close(fd);

}

This sequence creates a new task by opening /dev/realtime/clone, sets
period, deadline and cost and puts the running process into the process group
of the task. It then asks the scheduler to admit the new task by running
the schedulability test. If the write succeeds, the task was admitted.

The main loop processes a video frame and then gives up the processor
(yield) while waiting for the next frame. When the application has finished,
it removes the task from the system and exits.

In order to avoid additional introduction of naming and runtime lookup
of NCSs, we also transformed the specification of NCSs to one that is more
convenient to handle and implement, but less intuitive as the one presented
in table 2.

Real Time eYes OS

Currently we are implementing our scheduler in RTY, the OS for a sen-
sor node in our Eyes project [13]. RTY runs on limited hardware with a
TT MSP430 RISC processor. The small board is hosting 2 UARTs, AD-
converters, analog comparators, timers and a radio unit. There is 60Kbytes
of flash memory and 2Kbytes of RAM. The total RAM usage of RTY is
less than 512 bytes, which is mainly used for communication over the radio
and the serial interface. The kernel itself needs about 80 bytes (without the
stack). This does not beat TinyOS [14] that needs about 50 bytes of RAM,
however we offer hard RT services, which TinyOS does not.

Because of given limitations RTY uses RT transactions tasks, which is
the simplest form for a resource using RT task. Such a resource is for instance
a communication interface. When using transactions, all needed resources
are claimed during runtime. This may limit preemption possibilities of the
system, however it simplifies the programmers interface even further: a user

12

does not need to synchronise the use of resources; this is entirely done by
the scheduler. Feasibility analysis and admission control is done off-line.
Whether we can afford a timer to indicate the expiration of a deadline is
still under discussion.

Another important issue to be considered in more detail is the relation
between Quality of Service, and energy usage of a sensor node. Our approach
is to lower the clock-rate as far as possible in order to save energy. However,
a consequence of a slower clock is the increase of the run time costs C of our
tasks, which in turn, can cause the excess of deadlines of these tasks. Our
feasibility analyses can easily detect this excess and it can help to find the
lowest clock rate with which the feasibility is still guaranteed, thus offering
the best QoS for the lowest price.

We have had some lively debates over whether it is worthwhile to have a
RT scheduler that can manage shared resources. Most of the RT applications
we considered do not have any resources that are shared. However, some are
non-preemptive and we can use the presented feasibility analysis technique
by modelling non-preemption with transactions sharing a single resource.
We use this model for admission control in RT communication in our real-
time network RTnet [15] and currently also for Quality of Service control ex-
periments with Bluetooth [16]. Another application where we could use the
presented technique is Clockwise [17], a mixed-media file system, originally
based on Jeffay’s theory [18], in which the presented scheduling algorithms
were used for non-preemptable RT disk scheduling.

The battle about whether or not to include support for resource sharing
in our RT scheduler was won by the resource-sharing camp: the schedulabil-
ity test is straightforward and the run-time complexity is practically O(1):
only the queue insertions are not constant-time operations, but the queues
are invariably very short. In addition, the scheduler prevents resource con-
tention from causing gratuitous context switches and it is completely dead-
lock free. Finally, the same scheduler can trivially be used for preemptive
or non-preemptive EDF scheduling.

5 Conclusion

We have presented a real time scheduling/dispatcher that can be can handled
by very minimal means, even in the case when shared resources are used. By
extending EDF with deadline inheritance, an elegant feasibility algorithm
has been derived that is used for on-line admission control of new tasks.
An additional advantage of the proposed method is that synchronisation
of tasks due to resource usage is almost completely shifted to the system
level, which results in a simple user interface: the application programmer
may have the illusion of a run-to-completion semantic for each task and
the system is deadlock free. Nevertheless the system preempts running and

13

resource-using tasks in favour of tasks with shorter deadlines but avoids
gratuitous task switching. We have implemented our scheduler/dispatcher
in several, quite different operating systems. From this we can conclude that
our method is easy to implement, needs few code and a negligible amount
additional RAM, while run-time overhead is low. This makes our scheduling
technique ideal for use in a large variety of RT systems, for processing as
well as for communications. In particular it is appropriate for those systems
that have to work with limited resources.

Acknowledgements

Acknowledgements are due to Ferdy Hanssen for carefully reading this doc-
ument, for discussions and for implementing the RT-Linux implementation
and to Job Mulder for a first implementation of EDFI in the RTY kernel.

References

[1] C. L. Liuand J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46-61, 1973.

[2] P. G. Jansen and R. Laan, “The stack resource protocol based on real-
time transactions,” IEE Proceedings Software, vol. 146, no. 2, pp. 112—
119, Apr 1999.

[3] S. K. Baruah, A. K. Mok, and L. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” in Proceedings of the
Real-Time Systems Symposium, Dec 1990, pp. 182-190.

[4] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings, “Hard
Real-Time Scheduling: The Deadline Monotonic Approach,” in Pro-
ceedings Sth IEEE Workshop on Real-Time Operating Systems and
Software, Atalanta, 1991.

[5] E. W. Dijkstra, Cooperating sequential processes. — Academic Press,
1968, pp. 43-112.

[6] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance pro-
tocols: An approach to real-time synchronization,” IEEE Transactions
on Computers, vol. 39, no. 9, pp. 1175-1185, Sep 1990.

[7] T.P. Baker, “Stack-based scheduling of real-time processes,” The jour-
nal of real-time systems, vol. 3, no. 1, pp. 67-99, 1991.

[8] R. Rajkumar, Synchronization in Real-Time Systems, A priority In-
heritance Approach. Kluwer Academic Press, 1991.

14

[9]

[10]

[11]

[12]

L. Sha, R. Rajkumar, and S. Sathaye, “Generalised rate-monotonic
scheduling theory: A framework for developing real-time systems,” Pro-
ceedings of the IEEFE, vol. 82, no. 1, pp. 68-82, Jan 1994.

“Real-Time feasibility analysis tool web site,” http://wwwes.cs.
utwente.nl/feas/.

“Real-Time Linux web site,” http://www.rtlinux.org/.

“Real-Time Application Interface for Linux web site,” http://
opensource.lineo.com/rtai.html.

“The eyes project,” http://eyes.eu.org/publications/d1.2.pdf.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister,
“System architecture directions for networked sensors,” in Architectural
Support for Programming Languages and Operating Systems, 2000, pp.
93-104.

J. Scholten, P. G. Jansen, F. T. Y. Hanssen, and T. Hattink, “An In-
Home network architecture for Real-Time and Non-Real-Time commu-
nication,” in IEEE Region 10 International Conference on Computers,
Communications, Control and Power Engineering (TENCON). Bei-
jing, China: IEEE Computer Society Press, Los Alamitos, California,
Oct 2002, pp. 728-731.

J. Haartsen, M. Naghshineh, J. Inouye, O. Joeressen, and W. Allen,
“Bluetooth: Vision, goals, and architecture,” Mobile Computing and
Communications Review, vol. 2, no. 4, pp. 38-45, Oct 1998.

P. Bosch, S. J. Mullender, and P. G. Jansen, “Clockwise: A Mixed-
Media file system,” in IEEFE Int. Conf. on Multimedia Computing and
Systems (ICMCS), vol. II. Firenze, Italy: ITEEE Computer Society
Press, Los Alamitos, California, Jun 1999, pp. 277-281.

D. K. Jeffay, Stanat, and C. Martel, “On non-preemptive scheduling of
periodic and sporadic tasks,” in Proc. of the 12" IEEE Real-Time Sys.
Symp., 1991, pp. 129-139.

15

