
Adding a System Call to Plan 9

John Floren (john@csplan9.rit.edu)

Sandia National Laboratories

Livermore, CA 94551

DOE/NNSA Funding Statement

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

Disclaimer of Liability

This work of authorship was prepared as an account of work sponsored by an agency of the United
States Government. Accordingly, the United States Government retains a nonexclusive, royalty-free license
to publish or reproduce the published form of this contribution, or allow others to do so for United States
Government purposes. Neither Sandia Corporation, the United States Government, nor any agency thereof,
nor any of their employees makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or pro-
cess disclosed, or represents that its use would not infringe upon privately-owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or other-
wise does not necessarily constitue or imply its endorsement, recommendation, or favoring by Sandia Cor-
poration, the United States Government, or any agency thereof. The views and opinions expressed herein
do not necessarily state or reflect those of Sandia Corporation, the United States Government, or any
agency thereof.

__________________
SAND number 2008-2232W



- 2 -

Adding a System Call

The process for adding a new system call to Plan 9 is rather simple. For this example, a "kernel
getpid " function will be added, mirroring the functionality of thegetpid() function, but using a sys-
tem call rather than a libc function.

There are four files that must be modified to add a new system call:
� /sys/src/libc/9syscall/sys.h
� /sys/include/libc.h
� /sys/src/9/port/systab.h
�One of /sys/src/9/port/[sysauth, sysfile, sysproc, sysseg].c,
depending on the syscall type

/sys/src/libc/9syscall/sys.h (User-mode and Kernel-mode)

The first file that will be modified is/sys/src/libc/9syscall/sys.h . This file numbers
the system calls; by default, the last syscall listed ispwrite , index 51. We will add#define KGET-
PID 52 to the end of the file. When libc is built, it generates a set of small assembly functions that move
the system call number to a register and perform interrupt 0x40; now thatkgetpid has been added, a
function will be generated that moves 52 to the register and does the interrupt.

/sys/include/libc.h (User-mode)

It is necessary to modify/sys/include/libc.h to definekgetpid. The appropriate line in
this case isextern int kgetpid(void); . Failing to insert this definition will result in a compiler
warning.

/sys/src/9/port/systab.h (Kernel-mode)

Next, the new system call must be registered in/sys/src/9/port/systab.h ; this file con-
tains an array of the system call functions. When a system call interrupt is generated, the correct function is
located in the array and called; it then performs the desired operation and returns, allowing the system to go
back to user mode. A script,/sys/src/9/port/mksystab, will create a newsystab.h file auto-
matically; simply runrc /sys/src/9/port/mksystab > /sys/src/9/port/systab.h

Examining the new file, a new line containingSyscall syskgetpid; is now among the rest of
the Syscall definitions, and two new entries in thesystab[] and sysctab[] arrays have been
added, containing[KGETPID] syskgetpid, in systab[] and [KGETPID] Kgetpid ,
in sysctab[] . This means that when a system call interrupt is generated with an argument of 52 (the
index of kgetpid in the array), the trap handler will accesssystab[KGETPID] and call the handler
function,syskgetpid.

/sys/src/9/port/[sysauth, sysfile, sysproc, sysseg].c (Kernel-mode)

Finally, the handler function,syskgetpid, must be written. Sincekgetpid is a process-related
function, /sys/src/9/port/sysproc.c is the appropriate file to modify. Thesyskgetpid func-
tion is exceptionally simple:

long
syskgetpid(ulong *arg)
{

return up->pid;
}

Examples of more complex functions are in thesysproc.c file.

Compiling and Testing

The new kernel is now ready to be built. Since libc was modified, rebuild libc first, then build the
kernel as usual. Now, a test program will work as expected:



- 3 -

% cat > kgetpid.c
#include <u.h>
#include <libc.h>

void main() {
print("My pid: %d\n", kgetpid());
exits(0);

}
^D
% 8c kgetpid.c; 8l kgetpid.8; 8.out
My pid: 123

Tracing the New System Call

Using a kernel tracing tool still in development, it is possible to examine the relative amount of time
spent in executing the system call. The test program is changed as shown below; data is then collected with
the tracing tool and plotted. The plot on the next page shows the results gathered; since many functions
were called during the execution of the program, it is difficult to read the function labels on the y-axis, but a
box has been placed around the area of time where thekgetpid system call ran. The execution time for
the system call is minimal compared to the process startup and shutdown overhead. The second plot shows
the area within the box; as the graph shows, the actual process of executing a syscall is very simple.g4

#include <u.h>
#include <libc.h>

void main() {
kgetpid();
exits(0);

}



- 4 -



- 5 -

userureg

memmove

syskgetpid

procctl

notify

kexit

syscall
’plotme-kgetpidonly’ using 1:2:3:ytic(5):xtic(1)


