
Circuit Design Aids (CDA) on Plan 9

A. G. Hume

M. Kahrs

T. J. Killian

ABSTRACT

CDA is a system for the design and prototyping of digital systems. At the front end
it provides hierarchical schematic entry, programmable logic device design and board
layout; at the back end it produces data for various manufacturing technologies, in partic-
ular wire-wrap and multiwire.

1. Introduction.

CDA is a design system, i.e., a collection of programs and data formats dating back almost 15 years. It has
progressed with the accompanying changes in display, computing and device technology. To theCDA user,
A hardware design has a logical part and a physical part. The logical part consists of circuit schematics,
generally supplemented by boolean equations together with finite state machines and programs in ROMs.
The physical part includes board layout and wire routing.

CDA has its own terminology; a circuit containschipseach identified by aname(which is arbitrary, and of
mnemonic value to the designer) and atype(which is generic, e.g.,74LS74). Schematics can be hierarchi-
cal; what appears syntactically as a chip can, in fact, be an instance of a parameterlessmacro, (i.e., another
drawing) if the filetype.w exists. Real chips havepins, each identified by apin nameandpin number, and
a package type. Pin names and their mapping onto pin numbers are a property of the chip type; the map-
ping from pin numbers to physical coordinates is a property of the package type.

Pins are connected by nets, which have uniquenet names(assigned by the drawing to net conversion pro-
gram if omitted by the user). It is an error for a pin to be connected to more than one net. Nets such as
VCCandGNDgenerally need different routing algorithms from ordinary nets; these are calledspecial-signal
netsin cases where the distinction is important.

A board is a physical mounting for packages. It is mostly characterized by itspin holes(available for pack-
age insertion) andspecial-signal pins(connected to special-signal nets). An I/O connector, where signals
enter or leave the board, is simply a special case of a chip.

The manual pages for theCDA commands and file formats are in section 10 of the manual. Coventionally,
the commands are kept in/bin/cda , and so, for example, to run thegnetprogram, you would actually
type something like

cda/gnet < timing.g > timing.w

2. Methodology.

These are the conventional steps in a design. Many are necessary simply to maintain consistency between
‘‘source’’ and ‘‘object’’ files. We will collect all of this into amkfile in a later section.

(1) The interactive programgraw is used to construct schematics (kept in files whose names end with
.g .) The net list of a circuit diagram (its.w file) are derived from the.g file by runninggnet.

(2) Any editor may be used to create files inlde format for logic that is to be implemented with Pro-
grammable Array Logic(PAL)’s. These filenames end with.lde . Pin information resides in a

- 2 -

corresponding.p file, generated bypart which is a member of thepart family of programs.

(3) A .pins file, that matches pin names with numbers for each chip type, must be constructed. Most
pin information comes from standard libraries, but the user must generally supply some of it, usually
for I/O connectors (io.pins) or non-standard chips (my.pins). Mkpins reads.w files, .p files,
and pin libraries to produce the.pins file. The principal advantage of usingmkpinsis to reduce the
size of the pins file and thereby speeding up the time spent incdmglob.

(4) Cdmglob -f -vreads the.w and.pins files to produce a.wx file, in which all macros are expanded,
and nets are described in terms of pin numbers. The-v flag tellscdmglobto include the name of the
expanded pins in the output. This will be used in the final stages byannotateto create a.a file con-
taining just the pin numbers (ingraw format). This file, when "catted" with a.g file will label all
the pins with pin numbers.

(5) At this point one may do static circuit checks withsmoke. The errors will be rather voluminous until
all pins are declared correctly on the.tt lines. Some errors are impossible to eradicate, particularly
those with a mix of analog and digital components.

(6) Most files discussed so far have to do with the logical part of the design, and, except for.lde files,
are inCDL (Circuit Design Language). The remainder of the physical design files are inFIZZ format.
So, at this point, one usesfizz cvtto turn the.wx file from cdmglobinto aFIZZ .fx file.

(7) As with the.pins file, one creates a.pkg file with geometric descriptions of each package type.

(8) A geometric description of the board (.brd or .board file) in FIZZ format is made (or stolen from
/sys/lib/cda/boards).

(9) Chip positioning information (.pos file) is generated. This is usually done interactively withplace.

(10) At this point, the design should be checked withcheck. This will find any errors that might result
from unplaced chips or overlapping packages and so forth.

(11) The wrap list (.wr file) is now made, and one can physically wrap the board, typically by using a
semiautomatic machine.

(12) To make changes, one generates a new.wr file; rework then compares the new and old wrap files
and generates separate lists for unwrapping and rewrapping.

3. Graphics input

The graphics editorgraw is used to create and modify drawings, a.k.a. schematics. A drawing consists of
chips, macros,andsignalsconnected bypins. Each chip has anameand atype. Pins can have either a
nameor anumber.

3.1. Using graw

The editor,graw can be given a list of files ending in.g. or an empty list. Whencda starts, the cursor
changes to a×. Button 1 performs two tasks: a single click locates the cursor; when dragged with the but-
ton held down, the mouse leaves behind a line. Button 2 presents a list of useful options:onesies → can
be used to select eitherbox which then can be used to sweep out the rectangle of a box using button 1, or
macros which can also sweep out a box using button 1.

inst → selects a master to be instantiated and attached to the cursor until any button is pressed.graw
doesn’t have any masters when loaded initially. The standard library of gates can be read by using the
read command.sweep uses a rectangle input with button 1 to grab a set of objects and drag them until
any button is pressed.

slash differs fromsweep only in that rectilinear lines are first cut by the input rectangle.

cut undraws and moves the object(s) last drawn or moved to the cut/paste buffer.paste attaches a copy
of the cut/paste buffer to the cursor until any button is pressed.

snarf is acut without the undraw.

scroll attaches the entire drawing to the cursor until any button is pressed.

The button 3 menu entries areedit, read, write, exit, and new, followed by the list of

- 3 -

filenames currently being edited.

edit prompts for a file name and reads in the file for editing. Backspace and control-W may be used to
edit the name; a null file name aborts the operation.read prompts for the name of a master file, reads it
in, and plants a reference to it in the current file. The names of the masters in the file are added to those in
the inst → menu for the current file, overwriting older definitions if necessary.write prompts for a file
name (starting with the current file name). The non-null result becomes the new file name and the file is
written. exit terminates the program. You must type a ‘y’ to really exit.new creates a new, unnamed
drawing for editing.

Selecting a file name selects the current file.

4. Signal Bundles and Macros.

Consider this buffer between two 8-bit busses:

z7

z6

z5

z4

z3

z2

z1

z0

x7

x6

x5

x4

x3

x2

x1

x0

drive- OE0-

OE1-

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

D7

D6

D5

D4

D3

D2

D1

D0
74F244
buffer

It illustrates severalgraw conventions. Thechip is indicated by a box; its nameis buffer ; its type is
74F244 . These are simply unattached text strings that appear stacked inside the box.Pin names(e.g.,D0)
are strings that appear on the inside edge of the box.Netsare lines that end on a pin. Net namesare strings
that are placed on nets. A trailing - conventionally indicates an active-low signal.

Even this trivial example involves repeated patterns. A much more succinct equivalent is:

z<0:7>x<0:7>

drive- OE?-

Y? D?
74F244
buffer

Thegeneratorx<0:7> expands into the ordered listx0 , x1 ,... x7 . ThepatternD? matches two-character
pin names that begin withD. (The space of possible names comes from the.pins file entry for the chip
type.) The names that match the pattern aresorted alphabeticallyand put into correspondence with the
nets.

If connected sets of nets and pins do not have the same cardinality, the smaller set is reused until the larger
is exhausted. Thus in the example, thedrive- net gets connected to bothOE0- andOE1-, as desired.

Another example of the same buffer is shown below:

x<0:7>

buffer.<0:7>
74F244

z[0-7]

buffer
74F244

OE?-drive-

Note that since the buffer symbol is too small to hold the name of the chip, the name and type are "con-
nected" to the instance via a wire. The wire is not considered a net bygnet. Also notice that the range
<0:7> after the name of the chip is appended to the pin names. In fact, this buffer has invisible pin names
of D andY. (input and output respectively). Thus, after appending the range,gnetwill generateD<0:7>
andY<0:7> . Since the output enable can’t fit, the output enables are put in another, smaller box.

- 4 -

Frequently one has a group of chips that will be used or replicated as a unit. In such a case it makes sense
to define amacrothat may be instantiated as required. A macro lives in its own file. Here is an example,
opm.j :

SO

/reset-

oe-

PHIM

opm
YM2151

D?

CS-

WR-

RD-

A0

IC-

SH[12]

IRQ-

fm_data

data<0:7>

wr-

rd-

a0

/reset-

opm_clk

interrupt-

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

D<0:7>

WR-

RD-

A0

CLK

INT-

CS- cs-
SO

hold[12]

PHI1 dac_clk

SER

SRCLK

SRCLR-

sr0
74LS595

sr[01]
74LS595

G-

RCLK

Q? OUT<00:15> OE- srbus<00:15>

RCLK rclk

HOLD[12]

SER

sr1
74LS595

The dotted box (produced by sweeping out amacro box ingraw) identifies the circuit as a macro. Strings
outside of this box (conventionally in upper case) are ‘‘pin names’’ visible to the outside world. Most
names inside the box will be made local to each instantiation. Net names beginning with/ are ‘‘globals,’’
i.e., they represent the same signal throughout the design./VCC and /GND are the most common global
signals. These signals are expanded bycdmglob to be ‘‘<instance>//VCC’’ and ‘‘<instance>//GND’’
respectively. Asedscript can be used to rid the net list of the file name prefixes:

////s/ .*/// /
s/ // /

Now we use generators to make several instances ofopm.j :

rclk<00:15>
HOLD1

RCLK HOLD2

int<00:15>-INT-

bd<0:7>

A0

RD-

WR-

CLK

D?

opm<00:15>
opm

CS-

ba0

bwe-

bre-

OE-opmdecode<00:15>-

ops<00:15>-

OUT?? opmout<00:15>

hold1<00:15>

hold2<00:15>

colorburst

A?

B?
Y?

nor<0:3>
74F02

Sixteen copies of theopm circuit are made. The patternD? is at a lower, i.e., ‘‘faster running,’’ level than
opm<00:15> , with the effect that all theD0’s are connected tobd0 , all theD1’s are connected tobd1 ,
etc; similarly, all theA0’s are connected toba0 . On the other hand, all theCS- ’s are separate:
opm00/CS- (the instance ofCS- in opm00) is connected toops00- , opm01/CS- is connected to
ops01- , etc. The manual entry forcdmglobshould be consulted for all the details.

5. A Toy Example.

In this section we present a complete example. The design consists of twoI/O connectors that route signals
from a ribbon cable to a backplane. Here is the schematic, followed by the.w file:

- 5 -

PA?

cable
J2

RESET-

INT-

DS-

WE-

ACK-

PD?

PORT-

reset-

int-

ds-

we-

ack-

pd<0:7>

port-

plane
P2

RESET-

INT-

DS-

WE-

ACK-

PORT-

PA?

PD?

pa<0:5>

.c cable J2
reset- ,RESET- % 6 64 56
int- ,INT- % 6 64 72
ds- ,DS- % 6 64 88
we- ,WE- % 6 64 104
ack- ,ACK- % 6 64 120
pd<0:7> ,PD? % 6 64 136
port- ,PORT- % 6 64 152
pa<0:5> ,PA? % 6 64 168

.c plane P2
pa<0:5> ,PA? % 4 144 168
reset- ,RESET- % 4 144 56
int- ,INT- % 4 144 72
ds- ,DS- % 4 144 88
we- ,WE- % 4 144 104
ack- ,ACK- % 4 144 120
port- ,PORT- % 4 144 152
pd<0:7> ,PD? % 4 144 136

The comments (introduced by%) are coordinates from the.g file that can be used later to annotate the
drawing with pin numbers. Otherwise the.w file is mostly just a compendium of the text strings in the.g
file. In order to proceed further, we need a.pins file:

- 6 -

.t J2 BERG40 % plugs into ribbon cable
% . 10 . 20 . 30 . 40
.tt 2959292g5g4g4g4g4g4g4g4g4g2g2g2g2g292929
.tp VCC[1-4] 2 4 38 40
.tp V12 6
.tp V12- 36
.tp GND0[1-9] 8 10 12 14 16 18 20 22 24
.tp GND1[0-4] 26 28 30 32 34
.tp RESET- 1
.tp INT- 3
.tp DS- 5
.tp WE- 7
.tp ACK- 9
.tp PD[0-7] 11 13 15 17 19 21 23 25
.tp PA[0-5] 27 29 31 33 35 37
.tp PORT- 39

.t P2 DIN96RX % plugs into backplane
% . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90
.tt vgigig5g4g4gv44gigigigigigigiggv VGnnnnnnnnnGVnnnnnnnnGnnnnnnnnGV vg5gig4g4g4gv4igigigigigigigiggv
.tp RESET- 3
.tp INT- 67
.tp DS- 5
.tp WE- 69
.tp ACK- 7
.tp PD[0-7] 71 9 73 11 75 14 78 15
.tp PA[0-5] 79 17 81 19 83 21
.tp PORT- 85
.tp PC[0-7] 23 87 25 89 27 91 29 93
.tp GND<00:14> 2 4 6 8 10 12 16 18 20 22 24 26 28 30 31
.tp GND<15:18> 34 44 54 63
.tp GND<19:33> 66 68 70 72 74 76 80 82 84 86 88 90 92 94 95

It should be fairly obvious what is going on here. Note the appearance of thepackage typefollowing the
type name on the.t line.

For some parts, constructing a.tt line will be an onerous task (typical examples are parts withPGA

pinouts). For these parts, the use ofpga is recommended. It accepts a list of pin names and pin types (one
per line) and produces a suitable part definition. The manual page has all the details.

Now the.wx file can be made withcdmglob -v -f to get:

- 7 -

.t J2 BERG40

.tt 2959292g5g4g4g4g4g4g4g4g4g2g2g2g2g292929

.t P2 DIN96RX

.tt vgigig5g4g4gv44gigigigigigigiggv VGnnnnnnnnnGVnnnnnnnnGnnnnnnnnGV vg5gig4g4g4gv4igigigigigigigiggv

.f toy.w

.c plane P2
reset- 3 RESET-
ds- 5 DS-
ack- 7 ACK-
pd1 9 PD1
pd3 11 PD3
pd5 14 PD5
pd7 15 PD7
pa1 17 PA1
pa3 19 PA3
pa5 21 PA5
int- 67 INT-
we- 69 WE-
pd0 71 PD0
pd2 73 PD2
pd4 75 PD4
pd6 78 PD6
pa0 79 PA0
pa2 81 PA2
pa4 83 PA4
port- 85 PORT-

.c cable J2
reset- 1 RESET-
int- 3 INT-
ds- 5 DS-
we- 7 WE-
ack- 9 ACK-
pd0 11 PD0
pd1 13 PD1
pd2 15 PD2
pd3 17 PD3
pd4 19 PD4
pd5 21 PD5
pd6 23 PD6
pd7 25 PD7
pa0 27 PA0
pa1 29 PA1
pa2 31 PA2
pa3 33 PA3
pa4 35 PA4
pa5 37 PA5
port- 39 PORT-

This is basically a listing, for each chip, of net name–pin number pairs. Package types are copied through
from the.pins file for use by the physical design tools, and the expanded pin names are left as an aid to
humans andannotate.

At this stage, physical layout can begin. The first step is the conversion of the.wx file into a FIZZ

.fx file via cvt. The result is shown below:

Type{

name J2

pkg BERG40

tt 2959292g5g4g4g4g4g4g4g4g4g2g2g2g2g292929

}

- 8 -

Type{

name P2

pkg DIN96RX

tt vgigig5g4g4gv44gigigigigigigiggvVGnnnnnnnnnGVnnnnnnnnGnnnnnnnnGVvg5gig4g4g4gv4igigigigigigigiggv

Chip{ name plane type P2 }

Chip{ name cable type J2 }

Net pd0 2{ cable 11 PD0 plane 71 PD0 }

Net pd1 2{ cable 13 PD1 plane 9 PD1 }

Net pd2 2{ cable 15 PD2 plane 73 PD2 }

Net pd3 2{ cable 17 PD3 plane 11 PD3 }

Net pd4 2{ cable 19 PD4 plane 75 PD4 }

Net pd5 2{ cable 21 PD5 plane 14 PD5 }

Net pd6 2{ cable 23 PD6 plane 78 PD6 }

Net pd7 2{ cable 25 PD7 plane 15 PD7 }

Net ds- 2{ cable 5 DS- plane 5 DS- }

Net int- 2{ cable 3 INT- plane 67 INT- }

Net port- 2{ cable 39 PORT- plane 85 PORT- }

Net reset- 2{ cable 1 RESET- plane 3 RESET- }

Net we- 2{ cable 7 WE- plane 69 WE- }

Net ack- 2{ cable 9 ACK- plane 7 ACK- }

Net pa0 2{ cable 27 PA0 plane 79 PA0 }

Net pa1 2{ cable 29 PA1 plane 17 PA1 }

Net pa2 2{ cable 31 PA2 plane 81 PA2 }

Net pa3 2{ cable 33 PA3 plane 19 PA3 }

Net pa4 2{ cable 35 PA4 plane 83 PA4 }

Net pa5 2{ cable 37 PA5 plane 21 PA5 }

Next, a board file is selected. Since this is a simple example, a simple board like a Schroff 3U board
can be used. Here’s the definition of the Schroff board:

- 9 -

Board{
name schroff_board
align 1000/1100 6200/1000 6200/4400 1000/4200

}
Pinholes {

1500/1000 4800 400 100/300 A
1500/1400 4800 400 100/300 A
1500/1900 4800 400 100/300 A
1500/2300 4800 400 100/300 A
1500/2800 4800 400 100/300 A
1500/3200 4800 400 100/300 A
1500/3700 4800 400 100/300 A
1500/4100 4800 400 100/300 A

}
Pinholes {

1000/1100 300 3200 100/100 A
6400/1100 300 3200 100/100 A

}
Vsig 0{

name GND
pins 40{

1 2200/1200 - 5 6200/1200 V
6 2200/1600 - 10 6200/1600 V
11 2200/2100 - 15 6200/2100 V
16 2200/2500 - 20 6200/2500 V
21 2200/3000 - 25 6200/3000 V
26 2200/3400 - 30 6200/3400 V
31 2200/3900 - 35 6200/3900 V
36 2200/4300 - 40 6200/4300 V

}
}
Vsig 1{

name VCC
pins 40{

1 1500/1200 - 5 5500/1200 V
6 1500/1600 - 10 5500/1600 V
11 1500/2100 - 15 5500/2100 V
16 1500/2500 - 20 5500/2500 V
21 1500/3000 - 25 5500/3000 V
26 1500/3400 - 30 5500/3400 V
31 1500/3900 - 35 5500/3900 V
36 1500/4300 - 40 5500/4300 V

}
}

To fully understand this definition, a careful reading of theFIZZ format manual page is advised. Briefly, the
align is used with the semi-automatic wirewrap machine. The pinholes locate pins– the letterA denotes a
drill type (ignored here but still required). The final two Vsig declarations specify the special signals.
Given a board and the.fx file, placecan be used to place these two connectorsBERG40andDIN96RX.
The result is a.pos file like this:

Positions{
plane 1200/1100 0 0
cable 6600/1800 1 16

}

Checkshould be run on these files (.board , .fx , .pos) and any errors should be resolved before pro-
ceeding.Plot generates a picture of the board:

- 10 -

1 2 3 4 5 6

1

2

3

4

p
l
a
n
e

c
a
b
l
e

Note how the alignment marks are shown. Pin 1 of each package is illustrated by two concentric circles
around the pins. Now a wrap file (with extension.wr) suitable for driving the semi-automatic wire-wrap
machine can be created withwrap -cv. The use of Multiwire technology needs some hand holding– con-
sult an expert.

6. Debugging and rework

Debugging a circuit is beyond the scope of this paper, butCDA does provide support for altering a wirewrap
board.

The scenario is that you have a board that corresponds to a wraplistv1.wr . After making the necessary
changes to your schematics and or logic equations, a new wraplistv2.wr is generated. You then run the
command

cda/rework v1.wr v2.wr

which generates three files. The first file, UN.wr , contains a wraplist of the wires to take off (remove).
The second file,RE.wr , contains a wraplist of the wires to add. The third file, NEW.wr, is a wraplist that
is electrically equivalent tov2.wr but represents the wirewraps on the board (that is, if you wrapped a

- 11 -

board withNEW.wr you would get an identical board). After doing the unwrapping and rewrapping, you
should treatNEW.wr as your actualv2.wr .

7. Analog design

In spite of the fact thatCDA was created for the design of digital circuits, it can also be utilized for
analog circuits as well. A separate library of analog shapes located in/lib/graw/analog.g . These
shapes follow the following naming convention: the shape name begins with an orientation, a underscore,
and then the name of the shape. This is becausegraw doesn’t have rotation or reflection operations (yet).
The characters denote:

character orientation_ __________________
h horizontal
v vertical
l left
r right
t top
b bottom

For example, an electrolytic capacitor with the positive terminal is called "t_ecap". An NPN transistor with
the emitter on the bottom left would be "bl_npn". Analog design is facilitated by the famous-k option to
gnet . This option eliminates the need to draw lines to each component. The only problem is figuring out
the best location for the part name. Only experience will help you.

