
Very Concurrent Mark-&-Sweep Garbage Collectionwithout Fine-Grain SynchronizationLorenz Huelsbergenlorenz@research.bell-labs.com Phil Winterbottomphilw@plan9.bell-labs.comBell LabsLucent TechnologiesMurray Hill, NJ, 07974, USA

Appears in 1998 International Symposium on Memory Management

AbstractWe describe a new incremental algorithm for the concur-rent reclamation of a program's allocated, yet unreachable,data. Our algorithm is a variant of mark-&-sweep collec-tion that|unlike prior designs|runs mutator, marker, andsweeper threads concurrently without explicit �ne-grain syn-chronization on shared-memory multiprocessors. A global,but infrequent, synchronization coordinates the per-objectcoloring marks used by the three threads; �ne-grain synchro-nization is achieved without locking via the basic memoryconsistency guarantees commonly provided by multiproces-sor hardware. We have implemented two versions of thisalgorithm (called VCGC): in the Inferno operating systemand in the SML/NJ ML compiler. Measurements, comparedto a sequential generational collector, indicate that VCGCcan substantially reduce worst-case pause latencies as well asreduce overall memory usage. We remark that the degrees offreedom on the rates of marking and sweeping enable explo-ration of a range of resource tradeo�s, but makes \optimal"tuning for even a small set of applications di�cult.1 IntroductionGarbage collection|the automatic reclamation of a pro-gram's spent and unreachable storage|is a valuable systemsimplementation technique. By automatically identifying ac-cessible and hence potentially in-use data, garbage collection(GC) shoulders the error-prone task of memory allocationand deallocation for the programmer. In doing so, GC canimprove code quality and programmer productivity.In addition to the bene�t of providing a high degree ofsafety at the language level, garbage collection becomes vi-tal in systems where independent, perhaps untrusted, pro-grams must e�ciently coexist in a shared address space.In a distributed system, for example, code can migrate be-tween compute nodes and may need to cross security mem-branes [10, 15]. An imported piece of code may need toshare storage with other imported code; it is the operatingsystem's responsibility to recover such storage only when noprograms|local or remote|have live pointers into it. In

a system with GC, programs cannot generate a pointer todata they do not own; this eliminates a large class of secu-rity problems without the imposition (by the hardware andOS) of memory protection.Garbage collection, however, incurs costs that manifestthemselves as combinations of increased memory usage, run-time overheads on data accesses, and long latencies thatdisrupt a program's execution. The requirements of largememory and fast processor render many current GC imple-mentations unusable on small clients (e.g., mobile communi-cators); long collection latencies impair deployment of GC inprograms that require some degree of \real time" operation(e.g., communications protocols such as Fox [5] or interac-tive window systems). Conventional stop-&-copy collectors[9, 22], for example, require substantial additional storagefor making copies of live data. Even high-performance gen-erational collectors [25, 27, 18] periodically siphon all datafrom memory through the processor and into another areain memory. Mark-&-sweep collectors (e.g., [19, 7, 4]), on theother hand, have the disadvantage that they must continu-ally step through the entire set of free and in-use programobjects.To address garbage collection's inherent costs, collectordesigners incorporate concurrency into their designs (e.g.,[4, 2, 23, 12, 11, 26, 7]) both to interleave computation withcollection (thereby reducing GC latencies) and to delegatethe task of GC to additional processors in a parallel machine(thereby standing to improve overall performance). Exist-ing concurrent GC algorithms loosely fall into one of twoclasses: variations on mark-&-sweep collection (e.g., [7, 26])and incremental stop-&-copy collectors (e.g., [11, 2, 23, 12]).Practical mark-&-sweep designs to date do not expose max-imal concurrency: sweeping must strictly follow marking,they cannot overlap in time. (Lamport [17] and Queinnec,et al. [24] describe approaches that do overlap marking andsweeping. As we discuss (x3), their approaches are impracti-cal due to quadratic-time marking and �ne-grain mutator{marker synchronization.) Incremental stop-&-copy collec-tors, on the other hand, still require the large memoriesinherent in generational collection.This paper's algorithm|called Very Concurrent GarbageCollection (VCGC)|also uses concurrency to o�set GC'scosts, but does so with a variation on the mark-&-sweepalgorithm that, unlike its predecessors, has both of the fol-lowing properties:1. mutation, marking, and sweeping occur in parallel asthree separate threads; and2. no synchronization is required between the mutator,marker, and sweep threads.1

By \no synchronization" we mean no locks, critical sections,fetch-and-add primitives, etc. We assume only that the com-puter's memory system performs machine-word writes atom-ically; that is, if location M holds x before y is written toM , reads of M at any point in the computation and fromany processor will return either x or y, but never an \inter-mediate" value (such as the high bits of x and the low bitsof y). Contemporary multiprocessor computers provide thisform of memory atomicity.Our algorithm does require infrequent global barrier syn-chronization events to demarcate the algorithm's phases|experiments indicate that such events are separated in timeby many millions of instructions. Atomic machine-wordwrites, and infrequent barriers, su�ce to synchronize theVCGC algorithm for multiprocessor operation. Extensionof the algorithm to multiple mutator threads necessitatessynchronization on allocation which may be avoided in partby allocating from multiple lists or in multiple arenas simul-taneously (x2.4 and x4.2).VCGC, as do other concurrent collectors [28, 13], re-quires a write (or read) barrier as a mechanism with whichthe mutator communicates data-graph changes to the col-lector. Our write barrier is asynchronous (non-blocking)and requires no inter-processor coordination aside from theaforementioned memory atomicity. We provide C source forthis barrier in an appendix.We have built two VCGC implementations to demon-strate that this algorithm is viable in real systems. Thesystems di�er radically in the characteristics (size, lifetime)of the data they construct. This indicates that VCGC maybe applicable to a wide range of systems requiring auto-matic storage management. Since marking and sweepingoccur concurrently, their respective rates may be adjusted to\tune" memory usage, pause latency, and execution speed.Our �rst implementation is in Inferno [15]. Inferno is a dis-tributed operating system that supports mobile code. Stor-age is collected by a reference-counting collection schemeaugmented with VCGC; reference counting assures the in-stant reclamation of large objects (e.g., bitmaps) and VCGCreclaims the cyclic structures that elude reference counting.Via VCGC, Inferno is able to overlap lengthy transactions(I/O and communication) with collection. For example, userinput in Inferno occurs concurrently with GC.Our second implementation is in the Standard ML ofNew Jersey compiler [3] where we replace SML/NJ's multi-generational stop-&-copy collector [25] with VCGC. ThisVCGC implementation uses an allocation arena (essentiallya zero-th generation) as a bu�er; most objects do not sur-vive early generations [18] and hence their allocation froma storage list can be avoided. Empirical comparison, on auniprocessor, of VCGC and SML/NJ's generational collec-tor consistently �nds large reductions (3X{7X) in the lengthof maximum GC pauses with VCGC. Maximum VCGCpauses are in the tens of milliseconds versus hundreds forstop-&-copy generational collection. We also �nd substan-tial reduction in overall memory usage|over 35% for one ap-plication. The dramatic improvements in pause and memoryperformance, however, come at the price of increased execu-tion times. We argue that VCGC's performance in SML/NJis comparable to that of traditional mark and sweep col-lectors [19, 7, 4] and that further speed can be gotten byexecution on a multiprocessor.The main contribution of this paper is the VCGC algo-rithm; it is described in the next section. We discuss relatedliterature in Section 3. Section 4 describes the two VCGCimplementations and presents results.

2 VCGC AlgorithmHere we describe the Very Concurrent Garbage Collectionalgorithm. We �rst review the conventional free-list alloca-tion that underlies VCGC's allocator. Second, we give theVCGC algorithm for a purely functional mutator, that is,for programs without mutable state (references). In Sec-tion 2.3, we then extend the core algorithm to admit muta-tion via references. Finally, we describe how this algorithmcan support multiple mutator threads (x2.4).2.1 Free-list AllocationVCGC requires a conventional free-list allocator that con-ceptually works as follows. (Implementations can avoid muchof the overhead that general free-list allocators incur; Sec-tion 4 describes the allocator optimizations we implemented.)Upon initialization, a free-list allocator parcels the memoryavailable for free-list allocation into one or more initiallyfree blocks.1 Free blocks are linked to form the free list. Arequest for storage (by the mutator) scans the free list fora block that ful�lls the request. In the simplest schemes2,upon �nding the �rst such block, the allocator removes itfrom the free list and hands it to the requester. When ablock is identi�ed (by the sweeper) as no longer in use, it isagain placed on the free list. We require that it be possibleto �nd all blocks in the system and determine, for a givenblock, whether or not it is currently allocated.2.2 Functional AlgorithmFigure 1 contains the functional VCGC algorithm. VCGCoperates in epochs. The current epoch is the epoch de-noted by the integer variable epoch (line a).3 An epochcreates three concurrent threads (lines e,f,g) for the mu-tator, marker, and sweeper. We describe them separatelybelow. An epoch i maps to one of three colors by the func-tion: COLOR(i) � i mod 3All data (allocated objects) that are in use (i.e., not on thefree list) carry one of the three colors.2.2.1 MutatorThe mutator is the application program. It is parameterizedby the color of the current epoch, called the mutator color(line e in Figure 1). It allocates data by requesting spacefrom the free-list allocator (x2.1). Data thus allocated arecolored with the mutator color given by COLOR(epoch). Onlywhen no free block is available need the mutator wait for thesweeper to reclaim one. Objects with mutator color mustbe retained at least through the end of the current epoch.There are no data races with the marker or sweeper sincethe mutator is \color blind." It only tags newly allocateddata with the current epoch's color; it does not examinecolors as it traverses data.Mutator-sweeper synchronization on free-list accesses canbe avoided by maintaining two free-list pointers|one for1The terms \block" and \object" may be read interchangeably.We use the term \block" for storage with content anonymous to theoperation being described.2Extensions to this allocation scheme can select blocks based onbest �t rather than �rst �t, coalesce adjacent free blocks, etc. SeeKnuth [14] for further details.3The �rst epoch is numbered \2" to avoid \negative" epochs incolor computations. The epoch variable is a \big int" that does notwrap. This declaration is solely expository since only the three mostrecent epochs (including the current one) need be distinguished; twobits of state su�ce for this in practice.2

(a) big int epoch = 2;(b) root set t roots = fg;(c) thread t mutator, marker, sweeper;(d) forever f(e) mutator make thread mutate(COLOR(epoch));(f) marker make thread mark(roots, COLOR(epoch));(g) sweeper make thread sweep(COLOR(epoch-2));(h) barrier sync fmarker, sweeperg;(i) /* invariant: all reachable data have COLOR(epoch) */(j) suspend thread mutator;(k) roots get roots(mutator);(l) delete threads fmutator, marker, sweeperg;(m) epoch++;gFigure 1: The VCGC algorithm operates as a series of epochs. An epoch concurrently (1) runs the mutator, (2) marks, with the currentepoch's color (COLOR(epoch)), all data that were reachable in the previous epoch, and (3) reclaims any data marked with COLOR(epoch-2), themutator color of two epochs ago. The function COLOR(i) is de�ned as (i mod 3).mutator allocation and the other for sweeper reclamation.Thus, this producer-consumer hando� can occur withoutexplicit synchronization. (Implementation details of such amechanism are in Section 4.2.1.)2.2.2 MarkerThe marker thread is also parameterized by the currentepoch's mutator color (line f in Figure 1). It is responsiblefor bringing reachable data from the last epoch \up to date";these are data the mutator can reach and hence incorporateinto new data structures. Once initialized by the mutator,only the marker may alter an object's color. This is centralin allowing us to dispense with all �ne-grain synchroniza-tion. The marker recursively traverses data reachable fromthe mutator's root set4 of the previous epoch. This root setis copied from the mutator at the end of an epoch (line k)for use by the marker in the next epoch.The marker can reach data that have either the previousepoch's color (COLOR(epoch-1), called the marker color) orthe current epoch's color (COLOR(epoch), the mutator color).For each datum d encountered, the marker therefore doesone of two things. If the color of d is the marker color, d'scolor is changed to the mutator color and data reachablefrom d are recursively marked in this fashion. Otherwise, ifd's color is the mutator color, d is not changed or furtherexamined. In this latter case, d was|during this epoch|previously examined by the mutator and d's descendants areknown to have been marked.5When the marker completes, the invariant that \all reach-able data have the mutator color" (line i) holds. Note thatin the current epoch the marker will never encounter datawith COLOR(epoch-2) because at the end of the previousmark phase (and epoch) all reachable data must have hadCOLOR(epoch-1).There is no mutator-marker race since the marker's onlyvisible side e�ect is to change colors on objects tagged withthe previous epoch's color. As noted above, the mutator isoblivious to colors.4All live data is reachable from the root set . This set usuallyconsists of program registers and stack entries.5With extension to references (x2.3), data with the mutator's colorcould also have been allocated in the current epoch.

2.2.3 SweeperThe sweeper thread is parameterized by COLOR(epoch-2),called the sweeper color (line g in Figure 1). It exam-ines every block of storage in the system. If block b hassweeper color it may be deallocated and returned to thefree list; reclamation of b is safe because neither the mu-tator nor marker can reach it. If b has COLOR(epoch) orCOLOR(epoch-1), it is skipped because it is still potentiallyin use. (Blocks with marker color (COLOR(epoch-1)) willeither be marked with COLOR(epoch) during this epoch ifreachable from the root set or their color remains unchanged,indicating that they have become garbage. Garbage thusidenti�ed will be detected by the sweeper in the next epoch.)It is simple matter for an implementation to make reclaimedfree lists available for mutator allocation without explicitsynchronization (x4).There is no sweeper-mutator race and no sweeper-markerrace since the sweeper reads colors but does not write them.The only color that may change from \underneath" thesweeper is a marker color changing to the mutator color (re-call, only the marker may change an object's color). Markerand mutator colors are, however, ignored by the sweeper;the atomicity assumption (x1) constrains the values read tovalid colors. The sweeper only modi�es (reclaims) blockswith COLOR(epoch-2), which are inaccessible to the muta-tor and marker.Note that the interpretation of a concrete color changes asthe epoch changes. During epoch i, for example, all datatagged with COLOR(i) are live because they were allocatedby the mutator in this epoch or were marked by the markerwith this color since they were reachable from the last rootset. Data tagged with COLOR(i-1) may or may not be en-countered before epoch end by the marker and marked withCOLOR(i) depending on whether or not they are reachablefrom the root set. Data tagged with COLOR(i-2) will be re-claimed by the sweeper during epoch i; such data were notmarked in epoch i � 1 since they were unreachable to themarker, and hence to the mutator.When the sweeper and marker threads have completedtheir traversal of the system's blocks and of the program'slive data respectively, they rendezvous at a barrier synchro-nization (line h). This barrier is the only synchronization3

in the algorithm and occurs very infrequently (only aftercomplete marker/sweeper passes). All writes by all threadsmust complete before the barrier exits to ensure that allmarker recolorings are visible to the next epoch's sweeper.At this point the mutator thread is suspended and the mu-tator's root set is copied and retained for marking in thenext epoch (line k). Thread state is reset (line l) and thenext epoch entered (line m).2.3 Extension to ReferencesState, in the form of mutable references, poses problemsfor concurrent6 garbage collectors since a subgraph G0 ofthe dynamic data graph G may become temporarily discon-nected from G. Since a collector's marking phase traversesG, subgraph G0 may now not be encountered and properlymarked. Yet G0 may later be reconnected to G in a placealready visited by the marker. In this scenario G0 has be-come inaccessible to the marker before being marked. Thiscan result in G0's data being incorrectly reclaimed while stilllive.For VCGC, the reference problem manifests itself as fol-lows. During epoch i, the mutator fetches the content v ofreference cell r. It retains v (perhaps in a register) beforeupdating r with v0. That is, the mutator redirects r's linkfrom pointing to v to pointing to v0. Data reachable from vis still live, but potentially inaccessible to the marker sincethe mutator may have altered the graph reachable from theroots. That is, r may have held the only reference to vand the marker may not have reached and marked v (viar) before the mutator replaced it with v0. The solution tothis problem is to require the mutator to communicate thereplaced content v as a root to the concurrently runningmarker thread.7 In particular, the marker must process thisnew root before epoch i + 1 can commence. In Wilson'sclassi�cation [28], VCGC is a snapshot-at-the-beginning al-gorithm since it retains the data reachable from the roots atthe beginning of an epoch into the next epoch.Note that unlike conventional concurrent mark-&-sweepalgorithms [7] and including designs that mark during sweep[17, 24], VCGC requires that the replaced object|and notthe target of the redirection|be marked (cf. Dijkstra, etal.'s shade operation [7]).Figure 2 is the functional VCGC algorithm extended tosupport reference update. Before an update to a reference,the mutator places the current content of the reference ina store set. The marker marks elements in the store set inthe same manner as it marks roots in the root set (x2.2.2).The di�erence is that elements may appear in the store setasynchronously during an epoch. The while loop handlesthe (expectedly rare) case of marker completion followed bya mutator store-set insertion immediately before mutatorsuspension. Note that the sweeper is complete before thewhile loop and need not be restarted in the loop body be-cause neither mutator nor marker can generate this epoch'ssweeper color.To circumvent all �ne-grain mutator/collector synchro-nization in VCGC, the store set (write barrier) is imple-mented as a non-blocking store list. (A C implementationof such a store list is in the appendix.) During an epoch themutator builds a linked list of store roots, with new store6References pose problems in conventional stop-&-copy collectorsas well since pointers from older to younger generations (due to ref-erence updates) may introduce additional roots.7An optimization is possible when v's color is the mutator color:v need not be communicated as a root since it and the data reachablefrom it have been, or will be, encountered by the marker.

roots inserted at the head of the list. The marker traversesthis list until it revisits a position in the list it has previ-ously visited. The marker sees the store list as \empty"when it contains no elements or when the marker's store-listtraversal ends at the head of the list. Of course the store setmay become non-empty as the mutator inserts additionalroots. When an epoch completes, the store list is reset tothe physically empty list. The appendix provides furtherdetail.2.4 Multiple MutatorsVCGC straightforwardly admits multiple mutators. Eachmutator thread allocates objects of mutator color and main-tains a separate store set for its references. The marker mustnow examine multiple store sets instead of one. If allocationis from a single free list, synchronization amongst muta-tors is required on allocation. This synchronization can beavoided by providing multiple free lists or by bu�ering allo-cation in per-mutator allocation arenas.3 Related WorkThe VCGC algorithm of this paper is one in a long lineof mark-&-sweep algorithms starting with McCarthy's [19].Here we describe how VCGC di�ers from prior concurrentmark-&-sweep algorithms. In particular, we contrast VCGCwith Dijkstra, et al.'s collector [7] and with Lamport's [17]and Queinnec, et al.'s [24] \mark-DURING-sweep" (MDS)extensions thereof. The MDS collectors partially attain ourgoal|concurrent marking and sweeping|but di�er funda-mentally in design, which impacts their practical implemen-tation. We also brie
y describe other relevant approachesto concurrent garbage collection. Jones and Lins' book [13]and Wilson's survey [28] provide further details and context.3.1 Dijkstra, et al.'s On-the-Fly CollectorDijkstra, et al.'s incremental collector [7] introduced the wellknown tricolor abstraction (white, gray, black) to reasonabout mutator{collector interaction. VCGC too uses threecolors (mutator, marker, and sweeper), but does so in a sig-ni�cantly di�erent manner. With the tricolor abstraction,objects in the root set are �rst grayed at the beginning ofa collection phase. A gray object x is marked black by themarker, and x's children grayed. As they are generated,gray objects are queued for marking. Objects that retainthe white mark are garbage upon marker completion. Atthis point, interpretation of white and black is reversed, andthe next collection phase initiated. Note that the interpre-tation of gray does not change during a phase transitionwith the tricolor abstraction. Furthermore, in Dijkstra, etal.'s collector, sweeping must strictly follow marking since awhite object's color may change (to gray and later to black)at any point in the mark phase.VCGC, in contrast, allows interleaving of marking andsweeping. We can (unconventionally) cast VCGC using thetricolors as follows. During an epoch the VCGC sweeper re-claims white objects. The mutator allocates black objects.The marker blackens gray objects. Note that|unlike stan-dard tricolor marking|the marker does not encounter whiteobjects and hence never grays objects. When the mutatormodi�es the data graph, it communicates with the muta-tor to ensure that the overwritten object will be blackenedin the current epoch. At the end of an epoch, colors arereinterpreted: black is remapped as gray, gray remapped4

big int epoch = 2;root set t roots = fg;root set t stores = fg;thread t mutator, marker, sweeper;forever fmutator make thread mutate(stores, COLOR(epoch));marker make thread mark(stores, roots, COLOR(epoch));sweeper make thread sweep(COLOR(epoch-2));barrier sync fmarker, sweeperg;suspend thread mutator;while (stores 6= ;) fresume threads fmutator, markerg;barrier sync fmarkerg;suspend thread mutator;g/* invariant: all reachable data has COLOR(epoch) */roots get roots(mutator);delete threads fmutator, marker, sweeperg;epoch++;g Figure 2: VCGC algorithm for mutable references.as white, and white remapped as black. When the epochschange, gray objects|objects not reachable by the markerand hence not promoted to black|become white by virtueof this color remapping. It is not useful to state the conven-tional invariant that the mutator may not create a pointerfrom a black object to a white one because the mutator neversees white objects.3.2 Mark-DURING-Sweep CollectorsVCGC pipelines mark and sweep phases in a manner sim-ilar to collector designs of Lamport [17] and Queinnec, etal. [24]. Both prior \mark-DURING-sweep" collectors werederived from Dijkstra, et al.'s algorithm [7]. Extra complex-ity (�ve colors) allows them to �nd the same concurrency asVCGC. However, both MDS collectors use Dijkstra's atomicshade operation in both mutator and marker. (Queinnec,et al. require it in their sweeper as well.) That is, existingMDS collectors require frequent inter-processor synchroniza-tion amongst marker and mutator during typical computa-tion because either may concurrently modify a color visibleto the other. VCGC requires no �ne-grain synchronizationbeyond that provided by memory read/write atomicity (x1);this is possible because only the marker may change an ob-ject's color. Both previous MDS collectors are describedwith quadratic-time markers which make their implementa-tion yet more impractical. To our knowledge, neither priorMDS approach has been implemented.3.3 Other Concurrent CollectorsSteele's compactifying collector [26] performs a coloring mark-&-sweep collection, but does not interleave marking andsweeping. Steele's algorithm also requires �ne-grain syn-chronization between mutator and collector. An orthogonalapproach to concurrent mark and sweep collection is incre-mental copying which provides an avenue for future VCGCperformance comparison. Baker designed an incrementalcopying collector [4] based on the tricolor white-gray-blackabstraction. Halstead [11] extended Baker's core scheme

to shared-memory multiprocessors by using �ne-grain syn-chronization on individual objects. Appel, Ellis, and Li [2]propose using conventional memory-management hardwareto serve as the read barrier in Baker's incremental copy-ing collector [4]. Thereby they shift the granularity of thebarrier from individual objects to pages of objects. They re-port pause latencies in an early ML compiler. Boehm usesmemory management hardware to run mark-sweep collec-tion in parallel with the mutator [6], but serializes markingand sweeping and requires mutator{collector synchroniza-tion on object allocation. Concurrent replication-based col-lectors [12, 23] designed for ML and implemented on parallelmachines have|as has VCGC on a uniprocessor|reducedmaximum pause latencies to tens of milliseconds. Unlikereplicating schemes, VCGC does not rely on properties ofthe system being collected (e.g., pointer-equality semantics).Doligez and Leroy [8] implemented a concurrent, hybrid,stop-&-copy mark-&-sweep collector for ML. Their copy-ing collector reclaims a processor's local (i.e., cache) mem-ory and the mark-&-sweep collector reclaims storage in theshared global heap. Doligez and Leroy employ �ne-grainsynchronization and do not overlap the collector's mark andsweep phases.4 ImplementationsThis section describes implementations of VCGC in two sys-tems: Inferno [15] and SML/NJ [3]. The two descriptionsare organized as an overview of the system in relation toGC, followed by discussions of the implementation of thefree-list manager, colors, marker, sweeper, and mutator.4.1 VCGC in InfernoThis section describes the hybrid reference-counting/VCGCcollector of the Inferno operating system.
5

4.1.1 InfernoInferno [15] provides a distributed, network computing en-vironment in which resources are made transparently ac-cessible from anywhere in the network. Inferno's primaryuse is to provide a secure information dial-tone for networkappliances and applications. The system treats applicationcode as a resource that can be deployed throughout the net-work and run on a variety of clients or servers regardless oftheir processor architecture or underlying operating system.Code for the system is written in Limbo [16] and compiledfor a virtual machine called Dis [15]. An Inferno instancecontains either an interpreter, just-in-time compiler (JIT),or both.Inferno was designed to run in small devices with as lit-tle as one megabyte of memory. Lazy algorithms like stopand copy work well when there is substantially more freememory than the working set to amortize the cost of col-lections [28]. Reference counting (RC) has two propertiescrucial to the Inferno environment. First, the cost of col-lection is constant and bounded, which permits audio andvideo encoders and decoders to run predictably. Second,(non cyclic) memory structures are reclaimed immediatelyafter their last reference has been destroyed, making for avery small memory footprint. However, it is well knownthat RC does not detect cyclic garbage. By adding a con-current collection algorithm (VCGC) that can coexist withRC we retain RC's advantages while incrementally reclaim-ing cyclic garbage. Reference counting manages about 98%of the objects while doing typical development (Limbo com-piles, edits, runs, and debugs) in the Inferno window system(written in Limbo). The
exibility of this hybrid model hasgiven Inferno real-time garbage collection while still allow-ing a substantial amount of control by the programmer overobject lifetime.A program running on the Dis virtual machine [15] con-sists of a set of threads. Each thread has a program counterand call stack but code and data may be shared with otherthreads running on the machine. Threads are scheduled toexecute by the virtual machine rather than by the underly-ing operating system (if any). This allows Dis to multiplexmany threads onto a single system process but also to con-trol the interlocking of the heap. All threads occupy a singlelogical heap which is constructed from a linked list of largememory areas called regions. Memory within the regionsis organized as a free list using an unbalanced ternary tree.Nodes in the tree are sorted by block size. As usual, adja-cent free blocks are merged to control fragmentation. Thethread call stacks and module pointers|global data for thecurrently executing modules|comprise the root set for In-ferno GC.During idle virtual-machine cycles, the GC thread runsto collect unreferenced data; it may be preempted at anytime by a mutator thread becoming ready. This has provede�ective in reducing the latency of garbage collection byoverlapping it with I/O.4.1.2 Inferno Marker & SweeperIn Inferno, the VCGC marking and sweeping threads aremerged. In a scheduler quantum, the GC thread visits anumber of blocks in the heap by traversing the region table.Collection latency can be modi�ed by increasing or decreas-ing the number of blocks visited in each quantum. The oper-ation of the sweeper is trivial; the sweeper sets the RC of allblocks with sweeper color to zero, forcing their immediatedeallocation. The Inferno marker uses a modi�ed form of the

algorithm described in x2.2.2. The marker implementationintroduces a fourth static color into the algorithm, calledthe propagator, to avoid keeping both a stack for root settraversal and a store set of reference updates. (Techniquessuch as this for avoiding recursive marking are cataloged byJones and Lins [13].) When an epoch begins each root ismarked as a propagator. A count of propagators createdduring an epoch is maintained. When the marker reachesan object with the propagator color it is recolored with themutator color and each pointer within the object is coloredas a propagator and the count of propagators incremented.An epoch is complete when no new propagators are createdduring a pass through the region table. (Introduction of apropagator color requires a number of passes through theheap proportional to the depth of the deepest data struc-ture; this has not been problematic in practice since RCreclaims most storage.)4.1.3 Inferno MutatorThe Inferno mutator uses type descriptors, implemented asvariable-length bitmaps, to describe which words in an ob-ject are pointers. Type descriptors allow the collector to tra-verse the heap without requiring and searching for taggedpointers. An object's type, along with its color, is stored ad-jacent to its data. The mutator copies references with thevirtual machine's movp instruction which copies a referencefrom source to destination and performs the actions requiredby both garbage collectors|it increments and decrementsthe reference counts of the source and destination operandsrespectively. Since the source operand is a mutable referenceas described in Section 2.3, the mutator colors the objectthe reference points to as a propagator and increments thepropagator count|this is equivalent to inserting the over-written reference in the store set. Since there are only a�nite number of valid references in the heap, and all newobjects are created in the mutator color, it follows that anepoch must terminate. While an epoch will terminate, manypasses through the heap may be required for it to do so. Wehave not observed this potential problem in practice.4.2 VCGC for SML/NJHere we describe a uniprocessor implementation of VCGCin version 109.31 of the SML/NJ ML compiler; a future portof this implementation to a multiprocessor stands to furtherimprove performance.SML/NJ [3] is a compiler for Standard ML [21, 20], ahigher order and strongly typed language. ML programs arewritten in a mostly functional style; that is, reference up-dates are rare. The SML/NJ implementation is garbage col-lected by Reppy's multi-generational stop-&-copy collector[25] which is written in C. The SML/NJ system allocates alot of small data at a rapid rate. On a set of common bench-mark programs, we observed that over 90% of the allocateddata is less than 96 bytes in length. For an earlier compiler,Appel reports that the system allocates a word of data forevery 3{7 machine instructions executed [1]. Furthermore,most data (� 93%) dies before the current allocation arena(typically a megabyte) is full. We use an allocation arenato bu�er objects and reduce demand on the mark-&-sweepcollector. Allocation in this bu�er proceeds without color-ing. When the allocation arena becomes full, live objects areassigned a color and copied into space obtained from VCGCfree lists.SML/NJ objects (e.g., records, arrays, strings, etc.) arealways tagged with a type and, when necessary, with a6

length �eld [25]. This tag is four bytes in size and is used bythe runtime system and by the polymorphic-equality mecha-nism to identify objects dynamically. Two bits of SML/NJ'sdata-object descriptor tag are used to hold the three colorsrequired for VCGC. The maximum size of variable-size MLdata (e.g., records, strings) is thus reduced by a factor offour (to 223).4.2.1 SML/NJ Free ListsWe implemented two kinds of free-list manager in the run-time system. The �rst is a general-purpose free-list managerthat can store objects of any size. General-purpose free-listmanagers perform buddy coalescing (see, e.g., [14]) to avoidfragmentation. The second kind of manager is a �xed -n free-list manager that only handles data n words in length. Incontrast to the general-purpose manager, a �xed-n manageris extremely fast since it never needs to do variable-size com-putations. Moreover, a �xed-n list cannot fragment. Sweep-ing is also fast in �xed-n managers since it involves only a�xed-size pointer increment. As a further optimization, werun-length encode contiguous free blocks|this speeds free-list creation, sweeping, and allocation.We instantiate �xed-n list managers for all word sizes2 � n � 512 since most SML/NJ objects are small. Largerobjects are handled by a single instance of a general-purposemanager. Code objects are handled by another instanceof the general-purpose manager. (SML/NJ compiles to theheap.) A separate manager for code is necessary since point-ers into code need not point at the head of the enclosing codeobject|during GC, it is necessary to map a code pointer tothe head of the code object that holds it. Given a heappointer p, we use SML/NJ's implementation [1, 25] of a BigBag of Pages to \look up" which free-list manager, if any, ismanaging p.The free-list managers construct free lists on demand;that is, when a free list l becomes empty, and the sweeper hasnot reclaimed objects for l, additional storage (in C = 8Kbyte chunks) is requested from the operating system. Weopted to extend the mutator's free lists instead of waiting forthe sweeper to �nd appropriately sized garbage. Initially, nospace is allocated to a free list|an initial allocation requestcreates the list. If objects of size m are never created, the�xed-m manager will not occupy storage.For each free list, we maintain two pointers, one to thehead of the list used for mutator allocation and one for listsreclaimed by the sweeper. When the mutator's list is ex-hausted, it copies the sweeper's pointer to its pointer andclears the sweeper's pointer. The sweeper, upon seeing aclear pointer, deposits a reclaimed list there. This producer-consumer hando� can be done without explicit synchroniza-tion. At an epoch boundary, the sweeper's list is appendedto the mutator's.4.2.2 SML/NJ MarkerWhen the allocation arena is full, SML/NJ enters the run-time system and runs the GC threads. This �rst empties thearena by copying its live data into the free lists and colorsthe thus copied data with the current epoch's mutator color.The marker is then permitted to mark M objects. Markingproceeds recursively via a stack. To date, we have founda �xed 16K mark stack to su�ce; a future implementationwill dynamically extend the stack when necessary, or threadthe objects to be marked (cf. [13]).A copy of the root set for the marker is obtained at theend of an epoch when the marker and sweeper have com-

pleted. This condition signals that at the next �ll of theallocation arena, the root set is to be copied into the (nowempty) marker stack.4.2.3 SML/NJ SweeperThe sweeper sweeps S free-list chunks every time an allocation-arena �ll triggers GC. Recovered blocks are appended tothe current free list under construction, retained in a localpointer. Contiguous free blocks are coalesced using run-length encoding (x4.2.1). The sweeper periodically checksif the mutator has acquired the last reclaimed list (clearsweeper-list pointer). If so, it updates the sweeper list withthe list from the local pointer.4.2.4 SML/NJ MutatorTwo minor compiler changes were necessary to use VCGCwith code generated by SML/NJ. The �rst was to reducethe size of object length �elds in descriptors to make spacefor a color. The second was to emit code to build a storelist for VCGC (see x2.3). An element of the store list con-tains both the address of the updated reference (to trackroots for copying into the allocation arena) and a pointerto the reference's prior contents (to track roots for VCGCmarking).4.2.5 ResultsTimings for SML/NJ benchmarks using VCGC and con-ventional generational collection are in Table 1. We re-port the maximum pause latency, largest working set, totaland GC times for compiling and running six ML bench-marks. Pause latencies are in milliseconds, memory sizesin megabytes, and run times in seconds using the notationcompile-time+execution-time. The knuth-bendix programruns the Knuth-Bendix completion algorithm to produce adecision procedure for term equality in a theory; life im-plements Conway's game of Life, mandelbrot computes el-ements of its namesake's set8, ray does some ray tracing,simple performs
uid-dynamics computations, and tsp op-timizes traveling salesman tours. Timings were done on anunloaded 150Mhz R4400 SGI Challenge. Default compilersettings and an allocation arena of one megabyte were used.Our initial goal was to reduce pause latencies to below100 milliseconds. It was easy to �nd M and S values (thatgovern respectively the number of objects marked and thenumber of blocks swept per allocation-arena �ll) that re-duced the maximum pause to tens of milliseconds. It washowever di�cult to do so without increasing VCGC mem-ory usage to beyond that of the generational collector. Thisis in part due to the conservative nature of VCGC whichmay retain
oating garbage for a couple of epochs. Thenumbers in Table 1 are the result of a revised goal|tosimultaneously minimize pause times and memory usage.We experimentally settled on the (albeit ad hoc) settingsfor M and S where k = 4 and E is the current epochnumber. M = kD=(E + 1) +KM where D is the numberof objects marked in the previous epoch and KM = 1000.S = kC=(E + 1) +KS where C is the number of chunks cur-rently appropriated by the free lists and KS = 10. Thetunable VCGC parameters require further study.Memory usage was measured by tracking the maximumamount of OS memory held by the SML/NJ runtime at any8The mandelbrot benchmark can be discounted because it requiresessentially no GC.7

Max. Pause (ms) Memory (MB) Total Time (s) GC Time (s)knuth-bendix 79 20.5 17.32+9.94 11.41+7.10 VCGC404 22.3 7.42+3.27 2.46+0.53 generationallife 80 16.6 7.14+13.82 5.20+7.06 VCGC314 21.9 2.36+6.58 0.68+0.09 generationalmandelbrot 80 14.0 0.75+2.35 0.47+0.00 VCGC315 21.9 0.29+2.35 0.04+0.00 generationalray 79 16.4 8.86+27.82 5.50+16.86 VCGC314 21.9 3.84+11.69 0.91+0.04 generationalsimple 80 24.4 48.63+34.54 33.73+23.92 VCGC475 31.7 26.06+9.88 13.01+0.43 generationaltsp 80 20.6 7.26+88.02 4.42+60.93 VCGC516 32.8 3.13+31.02 0.65+1.45 generationalTable 1: Uniprocessor timing results of ML programs using the SML/NJ compiler with VCGC collection, tuned to simultaneously reducemaximum pause latency and memory usage. Comparison values are timings of SML/NJ's generational collector. Run times are writtencompile-time+execution-time.time. This amount contains the compiler since it must beresident to compile the application. Memory usage withVCGC is reduced by as much as 37% in the case of tsp.Other benchmarks show space reductions of over 30% (life,mandelbrot, ray, simple); knuth-bendix gains only 8%.We note that our VCGC implementation does not containa valuable SML/NJ space optimization: stripping descrip-tors from pairs as they are promoted from the allocationarena. By moving colors out of descriptors, VCGC can per-form similar optimizations and stands to improve localityand further reduce space usage.Pause latencies were measured by enabling system timers,during GC, of the compiles and runs of the benchmarks.Maximum VCGC pauses range from threefold reductions(life, mandelbrot, ray) to sixfold reductions (tsp). Thetwo other data intensive applications (knuth-bendix andsimple) exhibit better than �vefold reduction in their max-imum GC pause. As noted, one can trade an increase inmemory usage for even better pause performance and bet-ter overall running times.Overall VCGC performance su�ers due to the goal of re-ducing both pause times and memory. Total time increasedby as much as a factor of four and typically by a factor of twoto three. These times can be reduced by lengthening epochs(less marking and sweeping per �lled allocation arena) butat the cost of more memory in which to
oat garbage. Wewere able to approach to within about 30% of the genera-tional times, but with larger memory sizes. (Pause timeswere excellent, <20ms, however.) However, the VCGC mu-tate, mark, and sweep threads do no more basic work thanthe respective phases of traditional mark-&-sweep collectors[19, 7, 4]. (To see this, simply delay the sweep thread untilmarking is complete.) Furthermore, VCGC's store set im-plementation is not overly expensive compared to standardbarrier techniques (see Jones and Lins [13] or Wilson [28]).We therefore claim that the VCGC measurements are fairlyindicative of mark-&-sweep collection (with an allocationbu�er) of SML/NJ programs in general and hence are notdue to the VCGC algorithm per se. We note that VCGC andother concurrent mark-&-sweep collectors (e.g., [17, 24, 7])
oat garbage and therefore require additional storage andits associated processing beyond that of sequential mark-&-sweep.VCGC pause and runtime performance stands to greatlyimprove from implementation on a multiprocessor that cantruly overlap marking, sweeping and mutation in time.

5 SummaryWe have designed and implemented a new variant of mark-&-sweep storage reclamation called Very Concurrent GarbageCollection. In this algorithm, the mutator, marker, andsweeper threads operate concurrently within epochs; a novelcoloring scheme identi�es recyclable data. We implementedVCGC in the commercial Inferno operating system to de-tect and reclaim discarded cyclic data. Our other imple-mentation is in the SML/NJ ML compiler, where VCGCcan eliminate long GC pause latencies while reducing mem-ory usage. Tuning VCGC for pause, memory, and execu-tion performance|as well as characterizing its multiproces-sor performance|are directions for further investigation.AcknowledgementsThanks to Eric Grosse, Brian Kernighan, Dave MacQueen,Rob Pike, and the anonymous reviewers for valuable com-ments.References[1] A. W. Appel. Compiling with Continuations. Cam-bridge University Press, 1992.[2] A. W. Appel, J. R. Ellis, and K. Li. Real-time con-current collection on stock multiprocessors. In Confer-ence on Programming Language Design and Implemen-tation, pages 11{20. Association for Computing Ma-chinery, June 1988.[3] A. W. Appel and D. B. MacQueen. A StandardML compiler. Functional Programming Languages andComputer Architecture, 274:301{324, 1987.[4] H. G. Baker. List processing in real time on a serialcomputer. Communications of the ACM, 21(4):280{294, April 1978.[5] E. Biagioni, R. Harper, P. Lee, and B. G. Milnes. Sig-natures for a protocol stack: A systems application ofStandard ML. In Proceedings of the Conference on Lispand Functional Programming, pages 55{64. Associationfor Computing Machinery, June 1994.8

[6] H.-J. Boehm, A. J. Demers, and S. Shenker. Mostlyparallel garbage collection. In Conference on Program-ming Language Design and Implementation, pages 157{164. Association for Computing Machinery, June 1991.[7] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S.Scholten, and E. F. M. Ste�ens. On-the-
y garbage col-lection: An exercise in cooperation. Communicationsof the ACM, 21(11):966{975, November 1978.[8] D. Doligez and X. Leroy. A concurrent, generationalgarbage collector for a multithreaded implementationof ML. In Symposium on Principles of ProgrammingLanguages, pages 113{123. Association for ComputingMachinery, 1993.[9] R. R. Fenichel and J. C. Yochelson. A Lisp garbage-collector for virtual memory computer systems. Com-munications of the ACM, 12(11):611{612, November1969.[10] J. Gosling and H. McGilton. The Java language envi-ronment: a white paper. Sun Microsystems, Inc., 1995.[11] R. H. Halstead, Jr. Implementation of Multilisp: Lispon a multiprocessor. In Proceedings of the Conferenceon Lisp and Functional Programming, pages 9{17. As-sociation for Computing Machinery, August 1984.[12] L. Huelsbergen and J. R. Larus. A concurrent copy-ing garbage collector for languages that distinguish(im)mutable data. In Principles and Practice of Par-allel Programming, pages 73{82. Association for Com-puting Machinery, May 1993.[13] R. Jones and R. Lins. Garbage Collection. John Wiley& Sons, 1996.[14] D. E. Knuth. The Art of Computer Programming,Volume 1: Fundamental Algorithms. Addison-Wesley,Reading, MA, 1969.[15] Bell Laboratories. Inferno Developers Guide. LucentTechnologies, Murray Hill, NJ, 1996.[16] Bell Laboratories. The Limbo Language De�nition. Lu-cent Technologies, Murray Hill, NJ, 1996.[17] L. Lamport. Garbage collection with multiple pro-cesses: An exercise in parallelism. In Proceedings of theInternational Conference on Parallel Processing, pages50{54, August 1976.[18] H. Lieberman and C. Hewitt. A real-time garbage col-lector based on the lifetimes of objects. Communica-tions of the ACM, 26(6):419{429, June 1983.[19] J. McCarthy. Recursive functions of symbolic expres-sions and their computation by machine. Communica-tions of the ACM, pages 184{195, April 1960.[20] R. Milner. A theory of type polymorphism in pro-gramming. Journal of Computer and System Sciences,17:348{375, 1978.[21] R. Milner, M. Tofte, and R. Harper. The De�nition ofStandard ML. MIT Press, 1990.[22] M. Minsky. A LISP garbage collector algorithm usingserial secondary storage. A.I. Memo 58, MassachusettsInstitute of Technology, 1963.

[23] S. Nettles and J. O'Toole. Replication-based real-timegarbage collection. In Conference on ProgrammingLanguage Design and Implementation. Association forComputing Machinery, June 1993.[24] C. Queinnec, B. Beaudoing, and J.-P. Queille. MarkDURING Sweep, rather than Mark THEN Sweep. InConference on Parallel Architectures and LanguagesEurope: PARLE, pages 224{237, 1989.[25] J. H. Reppy. A high-performance garbage collector forStandard ML. Technical memorandum, AT&T BellLaboratories, January 1994.[26] G. L. Steele Jr. Multiprocessing compactifying garbagecollection. Communications of the ACM, 18(9):495{508, September 1975.[27] D. Ungar. The Design and Evaluation of a High Per-formance Smalltalk System. MIT Press, 1987.[28] P. R. Wilson. Uniprocessor garbage collection tech-niques. In International Workshop on Memory Man-agement. Springer Verlag, 1992.

9

typedef struct root_list {root_t root;struct root_list *next;} root_set_t;root_set_t *root_set = NULL; /* set of elements */root_set_t *last = NULL; /* last root_set capture */root_set_t *before_last = NULL; /* before_last root_set capture */root_set_t *this = NULL; /* next element to remove *//* invariant: 'this' always lies between 'last' and 'before_last' inclusive. *//* remove():* Returns the next not yet removed element from 'root_set', NULL if there currently isn't an element in 'root_set'.* Called only by the marker thread.*/root_set_t *remove(){ root_set_t *tmp;/* invariant: 'last' and 'before_last' elements, if non-NULL, have already been removed */if (this == before_last) {before_last = last; this = last = root_set;}if (this == before_last) return NULL;tmp = this; this = this->next;return tmp;}/* insert(x):* Inserts list node 'x' into the root_set for subsequent marker removal.* Assumes a root has been encapsulated in a fresh list node 'x' by caller.* Called only by the mutator thread.*/void insert(root_set_t *x){ x->next = root_set;MemoryBarrier(); /* force write of previous line to memory */root_set = x;}/* done():* Returns true if every element in the root set has been removed by marker.* Must be called with both mutator and marker threads halted, and their memory reads/writes complete.*/bool_t done(){ return before_last == root_set;}AppendixThe above C code provides non-blocking set functions forimplementing an asynchronous write barrier for the VCGCalgorithm. In particular, the code requires no explicit syn-chronization even though the mutator may add roots (withinsert) to the set while the marker concurrently removesroots (with remove). This write-barrier algorithm assumesatomic machine-word memory writes, as de�ned in the in-troduction (x1). Note that there is a read/write race withthe read of root set in remove and the write to root setin insert. This race is tolerable, however, because mem-ory writes are atomic and subsequent calls to remove willretrieve the \missed" element(s). The insert function con-tains a memory barrier that forces all pending writes tomemory on processors that may reorder writes; its operationhowever is local to the executing processor and does not in-volve inter-processor synchronization. Here it ensures thatthe insertion (x->next = root set) is seen by other proces-sors before root set is reset to x. Note that the root set listmonotonically increases in length over time; it may imme-diately be reclaimed when the mutator and marker threadsagree that the set is empty (i.e., when done succeeds). 10

