A tutorial for the sam command language

Rob Pike

ABSTRACT

samis an interactie &xt editor with a command language that makeavy use of
regular expressions. Althougithe language is syntactically similar éd(1), the details
are interestingly diérent. Thistutorial introduces the command languagd, does not
discuss the screen and mouse iaigef Wth apologies to those unfamiliar with the
Ninth Edition Blit software, it is assumed that the similaritysafn to mux(9) at this
level makessanis mouse language easy to learn.

The sam command language applies identically t@mtenvironments: when run-
ning samon an ordinary terminakia sam -d, and in the command windoof a down-
loadedsam, that is, one using the bitmap display and mouse.

Introduction

This tutorial describes the command languagsaof, an nteractve ext editor that runs on Blits and
some computers with bitmap displaySor most editing tasks, the mouse-based editing features dre suf
cient, and thgare easy to use and to learn.

The command language is often usefulvéger, particularly when making global changednlike
the commands ied, which are necessary to makhangessamcommands tend to be used only for com-
plicated or repetitie aliting tasks. It is in these morevinlved uses that the differences betwsam and
other text editors are most evident.

sams language makes it easy to do some things that other editors, including progessaesl éikd
awk, do ot handle gracefullyso his tutorial serves partly as a lessorsams manner of manipulating
text. Theexamples bela therefore concentrate entirely on the language, assumingathby fwith the
use of the mouse isamis at worst easy to pick up. ladt,samcan be run without the mouse at all (not
downloadell by specifying thed flag, and it is this domain that the tutorial occupies; the command lan-
guage in these modes are identical.

A word to the Unix adept: althougiamis syntactically very similar ted, it is fundamentally and
deliberately diferent in design and detailed semanti¥su might use knowledge afd to predict hav the
substitute command works, but ydwnly be right if you had used some understandingamfis workings
to influence your prediction. Be particularly careful about idioms. Idioms form in curious nooks of lan-
guages and depend on undependable peculiarggglioms simply dort work in sam 1,$s/a/b/makes
one substitution in the whole file, not one per lisam has its own idioms. Much of the purpose of this
tutorial is to publish them and maRueng in sama matter of learning, not cunning.

The tutorial depends on familiarity with regulagpeessions, although some experience with a more
traditional Unix editor may be helpfullo ad readers familiar witled, | havepointed out in square brack-
ets [] some of the relent differences betweead andsam Read these comments only if you wish to
understand the differences; the lesson is abaot not samvs. ed. Another typographic ceention is
that output appears this font, while typed input appears akmnty text.

Nomenclaturesamkeeps a cop of the text it is editing. This cgpis called afile. To avoid confu-
sion, | hae alled the permanent storage on diddréx file.

Text

To get started, we need some text to play witimy text will do; try something from James Goslisg’
Emacs manual:

$ sam-d

a

This manual is organized in a rather haphakzemnner The first
several sections wemvitten hastily in an attempt to pvide a

general introduction to the commands in Emacs and to try to show
the method in the madness that is the Emacs command structur

sam -dstartssamrunning. Thea command adds ¢ until a line containing just a period, and setsdhe
rent text (also calleddot) to what was typed —werything between tha and the period[ed would leare
dot set to only the last line.] Thecommand prints the current text:

p
This manual is organized in a rather haphazard manner. The first

several sections were witten hastily in an attenpt to provide a
general introduction to the commands in Enacs and to try to show
the method in the nadness that is the Emacs conmand structure.

[Again, ed would print only the last line.JThea command adds itsxeafter dot; thei command is lik a,
but adds the texbeforedot.

[

Introduction

p

I ntroduction

There is also a command that changes (replaces) the current text] &mat deletes it; these are illustrated
below.

To se all the text, we can specify whatttéo print; for the moment, suffice it to say tie$ speci-
fies the entire file. dd users would probably tyde$, which in practice is the same thing, but seewglo

0,%p

I ntroduction

This manual is organized in a rather haphazard manner. The first
several sections were witten hastily in an attenpt to provide a
general introduction to the commands in Enacs and to try to show
the method in the nadness that is the Emacs conmand structure.

Except for thew command described b&pall commands, including, set dot to the tet they touch.
Thus,a andi set dot to the metext, p to the text printed, and so oSimilarly, dl commands (eceptw) by
default operate on the current text [usli&d, for which some commands (suchg@gefault to the entire
file].

Things are not going to get very interesting until we can set dot arbitrdrilis is done by
addresseswhich specify a piece of the file. The addréskor example, sets dot to the first line of the file.

1p

| ntroduction
c

Preamble

Thec command didri’'need to specify dot; theleft it on line one.It’s therefore easy to delete the first line
utterly; the last command left dot set to line one:

d

1p
This manual is organized in a rather haphazard manner. The first

(Line numbers change to reflect changes to the file.)

The addresstext sets dot to the first appearanceeft after dot. [ed matches the first line con-
tainingtext] If textis not found, the search restarts at the beginning of the file and continues until dot.

/Emacs/p
Emacs

It's dfficult to indicate typographicallyout in this example no mdine appears aftédEmacs the text to be
printed is the stringEmacs, exactly. (The finalp may be left of — it is the default commandWhen
downloaded, hwvever, the default is instead to select the text, to highlight it, and t@nhaisible by ma-
ing the windev on the file if necessaryThus,/Emacs/indicates on the display thexteoccurrence of the
text.)

Imagine we wanted to change therd haphazard to thoughtless Obviously, what's needed is
anotherc command, but the method used aptb insert text includes awkne. Thesyntax for including
text without nevlines is to surround the text with slashes (which is the same as the syntax for text searches,
but what is going on should be clear from coaite Thetext must appear immediately after théor a ori).
Given this, it is easy to makthe required change:

/haphazard/c/thoughtless/

1p

This manual is organized in a rather thoughtless manner. The first
[Changes can aigys be done with a command, een if the text is smaller than a lineYou'll find that this
way of providing text to commands is much more common than is the multiple-lines syhteu want to
include a slasl in the text, just precede it with a backslasbnd use a backslash to protect a backslash
itself.

/Emacs/c/Emacs\\360/
4p
general introduction to the conmands in Enacs\360 and to try to show

We muld also mak this particular change by
/Emacs/a/\\360/

This is as good a place asyan introduce ther command, which undoes the last commaAdsec-
ondu will undo the penultimate command, and so on.

u
4p
general introduction to the commands in Enacs and to try to show
u
3p
This manual is organized in a rather haphazard manner. The first

Undoing can only back up; there is no way to undo a prewious

Addresses

Weve seen the simplest forms of addresses,there is more to learn before we can get too much
further An address selects agien in the file — a substring — and therefore must define theitiag
and the end of a gion. Thusthe addres43 selects from the beginning of line thirteen to the end of line
thirteen, andEmacs/selects from the beginning of the woEhacs to the end.

Addresses may be combined with a comma:

13,15

selects lines thirteen through fifteemhe definition of the comma operator is to select from tlginbéng
of the left hand address (the beginning of line 13) to the end of the right hand address (the end of line 15).

A few gecial simple addresses come in handg period) represents dot, the curremt,t® (line
zero) selects the null string at the beginning of the file $ss®lects the null string at the end of the file [not
the last line of the file]. Therefore,

0, 13

selects from the beginning of the file to the end of line thirteen,
%

selects from the beginning of the current text to the end of the file, and
0,%

selects the whole file [that is, a single string containing the whole file, not a list of all the lines in the file].

These are alhbsoluteaddresses: tlyerefer to specific places in the filsam also has relate
addresses, which depend on tladue of dot, and in fact we Y& dready seen one formEmacs/finds the
first occurrence oEmacssearching forwards from dot. Which occurrenceEafacsit finds depends on
the value of dot. What if you anted the first occurrentefore dot? Jusprecede the pattern with a minus
sign, which reerses the direction of the search:

-/ Emacs/

In fact, the complete syntax for forward searching is
+/ Emacs/

but the plus sign is the dadilt, and in practice is rarely used. Here is an example that includes it for clarity:
0+/ Emacs/

selects the first occurrence Bimacsin the file; read it asdo to line 0, then search forwards fémacs”
Since thet is optional, this can be writtddliEmacs/ Smilarly,

$-/ Emacs/
finds the last occurrence in the file, so
0/ Emacs/ , $-/ Emacs/
selects the text from the first to l&nacs inclusve. Sightly more interesting:
/ Emacs/ +/ Enacs/
(there is an implicit+ at the beginning) selects the sec&macsfollowing dot.
Line numbers may also be relati
-2
selects the second previous line, and
+5
selects the fifth following line (here the plus sign is obligatory).

Since addresses may select (and dot may be) more than one line, we need a definitiviows’‘pre
and ‘following:’ ‘previous’ meandefore the bginning of dot, and ‘following’ meansfter the encf dot.
For example, if the file containdAAA, with dot set to the middle twA’s (the slanting charactersyA/
sets dot to the firsh, and +/A/ sets dot to the lagt. Except under odd circumstances (such as when the
only occurrence of the text in the file is already the current text), xhedkected by a search will be dis-
joint from dot.

To slect thetroff -ms paragraph containing dot, hovee long it is, use
-/.PP/,].PP/ -1

which will include the PPthat begins the paragraph, and exclude the one that ends it.

When typing relatie line number addresses, the default numbér g0 he abee could be written
slightly more simply:

-/.PPI,I.PPl-

What does the addres4-1 or the equidlent +- mean? Itiooks like it does nothing, but recall that
dot need not be a complete line oftte+1 selects the line after the end of the current text,-arsglects
the line before the lggnning. Thereforer1-1 selects the line before the line after the end of dot, that is, the
complete line containing the end of ddWe @n use this construction to expand a selection to include a
complete line, say the first line in the file containigacs

O/Emacs/+-p
general introduction to the commands in Enacs and to try to show

The address- is an idiom.

Loops

Above, we changed one occurrence Bfmacsto Emacs\360 but if the name of the editor is really
changing, it would be useful to changk instances of the name in a single commasam provides a
commandx (extract), for just that job The syntax is</ pattern command For each occurrence of the
pattern in the selectedxtex sets dot to the occurrence and runs comma&od example, to changEmacs
to vi,

0,$x/Emacs/civi/

0,%p

This manual is organized in a rather haphazard manner. The first
several sections were witten hastily in an attenpt to provide a
general introduction to the conmands in vi and to try to show
the method in the nadness that is the vi comrand structure.

This works by subdividing the current teg$%— the whole file) into appearances of itsttel agument
(Emac9, and then running the command that followAvi() with dot set to the t¢. We can read this
example as, “find all occurrences Bmacsin the file, and for each one, set the current text to the -occur
rence and run the commandvi/, which will replace the current text hy.” [This command is soménat
similar to eds g command. Thdlifferences will deelop belav, but note that the default address, as
always, is dot rather than the whole file.]

A single u command is stitient to undo ax command, rgeardless of ha mary individual changes
thex makes.

u

0,%p

This manual is organized in a rather haphazard manner. The first
several sections were witten hastily in an attenpt to provide a
general introduction to the commands in Enacs and to try to show
the method in the nadness that is the Emacs conmand structure.

Of coursegis not the only commarnxican run. An acommand can be used to put proprietary mark-
ings onEmacs

0,$x/Emacs/a/{TM}/
/Emacs/+-p
general introduction to the conmands in Enmacs{TM, and to try to show

[There is no way to see the changes ag bappen, as irrds g/Emacs/s//&{TM}/p; see the section on

Multiple Changes, bela]
Thep command is also useful when by an x, but be careful that you say what you mean;

0,$x/Emacs/p
EmacsEnmacs

sincex sets dot to the text in the slashes, printing only that text is not going enbmformatie. But the
command thak runs can contain addressdsor example, if we vant to print all lines containingmacs
just uset-:

0,$x/Emacs/+-p
general introduction to the conmands in Enmacs{TM, and to try to show
the method in the madness that is the Emacs{TM command structure.

Finally, let's restore the state of the file with anotlxecommand, and makuse of a handy shorthand: a
comma in an address has its left side defawt sod its right side default t§, so he easy-to-type address
refers to the whole file:

X/Emacs/ {TM}/d

P

This manual is organized in a rather haphazard manner. The first
several sections were witten hastily in an attenpt to provide a
general introduction to the commands in Enacs and to try to show
the method in the nadness that is the Emacs conmand structure.

Notice what thisc does: for each occurrence of Emacs, find{iid} that follows, and delete it.

The ‘text’ sam accepts for searches in addresses anddommands is not simplexte but rather
regular expressions.Unix has seeral distinct interpretations of regulakmessions. Thdorm used by
samis that ofregexp(6), including parenthes€sfor grouping and an ‘or’ operatpfor matching strings in
parallel. samalso matches the character sequénogith a newline characteReplacement text, such as
used in thea andc commands, is still plain text, but the sequenceepresents newline in that context, too.

Here is an xample. Saywe wanted to double space the document, that is, ey eewline into
two newlines. Thefollowing all do the job:

xAn/ al\n/
xA\n/ c\n\n/
XIS al\n/
X iln/

The last example is slightly different, because it putsndime beforeeach line; the othexamples place it
after The first two examples manipulate méines directly [something outsided's ken]; the last tw use
regular expression$:is the empty string at the end of a line, while the empty string at the beginning.

These solutions all ke a pssible drawback: if there is already a blank line (that is,comsecutie
newlines), thgg make it much larger (four consecut rewlines). Abetter method is to extengegy group
of newlines by one:

XN\n+/ ain/
The regular expression operatomeans ‘one or moreh+ is identical toin\n*. Thus, this example talks
evay sequence of newlines and adds another to the end.
A more common example is indenting a block of text by a tab stop. The followingrd] athough
the first is arguably the cleanest (the blank text in slashes is a tab):

Xlal |
Xllel |
XL A\nlil /

The last example uses the pattern (idiom, reatly) to match lines:* matches the longest possible string
of non-newline characterd.aking initial tabs aay is just as easy:

XM d

In these ramples | hee ecified an address (the whole file), but in practice commaralthéke are more
likely to be run without an address, using the value of dot set by selecting text with the mouse.

Conditionals

Thex command is a looping construct: for each match of a regular expressiinait®(sets dot to)
the match and runs a commarghmalso has a conditionad; g/ pattern commanduns the command if
dot contains a match of the pattevithout changing the value of dothe inverse,v, runs the command if
dot doesnot contain a match of the pattern. (The lettgindv are historical and v& o mnemonic sig-
nificance. Yu might think ofg as ‘guard) [ed users should read the afeocefinitions \ery carefully; the
g command insam is fundamentally different from that ied] Hereis an &le of the dference
betweerx andg:

, X/ Emacs/ c/ vil
changes each occurrence of the wendacsin the file to the wordi, but
, 9/ Emacs/ c/ vi/

changes thavhole fileto vi if there is the wordEmacsanywhere in the file.

Neither of these commands is particularly interesting in isolation, butatkevaluable when com-
bined withx and with themselves.

Composition

One way to think about the command is that, gén a €lection (a value of dot) it iterates through
interesting subselections (values of dot within). In other words, it takes a piecd ahtecuts it into
smaller pieces. But the text that it cuts up may already be a piece cut lyoagxecommand or selected
by ag. samis most interesting property is the ability to define a sequence of commands to perform a partic-
ular task.tA simple example is to change all occurrenceBmfaicsto emacs certainly the command

X/Emacs/ c/emacs/
will work, but we can use ancommand to sg retyping most of the worEmacs
X/Emacs/ x/E/ cle/

(Blanks can be used to separate commands on a line ® theak easier to read.Vhat this command
does is find all occurrences Bmacs(,x/Emacs}, and therwith dot set to that te, find all occurrences of
the letterE (X/E/), and therwith dot set to that te, run the command/e/to change the character taver
case. Notehat the address for the command — the whole file, specified by a comma — isvenljogi
the leftmost piece of the command; the rest of the pieces di set for them by thexecution of the
pieces to their left.

As another simple example, consider a problem solvedeaponting all lines in the file containing
the wordEmacs:

X1.A\n/ g/Emacs/p
general introduction to the commands in Enacs and to try to show
the method in the madness that is the Emacs conmand structure.

This command says to break the file into lingg.{\n/), and for each line that contains the strifmacs
(g/Emacs), run the commangd with dot set to the line (not the matchirhacsg, which prints the line.To
sa/e typing, because\n is a common pattern imcommands, if the is followed immediately by a space,
the pattern*\n is assumed. Therefore, the abaould be written more succinctly:

T The obvious analogy with shell pipelines is only partially valid, because thédunaisam commands are all
working on the same text; it is only Wdhe text is sliced up that is changing.

X g/Emacs/p
The solution we used before was
X/IEmacs/+-p

which runs the comman#-p with dot set to each match &macsin the file (recall that the idiom-p
prints the line containing the end of dot).

The two commands usually produce the same result{tpgorm will print a line twice if it contains
Emacstwice). Whichis better? ,x/Emacs/+-pis easier to type and will be much faster if the file igdar
and there are ¥e occurrences of the stringubit is really an odd special casg/.*\n/ g/Emacs/pis slover
— it breaks each line out separatéhen &amines it for a match — but is conceptually cleaasd gener
alizes more easilyFor example, consider the following piece of the Emacs manual:

conmand nanme="append-to-file", key="[unbound]"
Takes the contents of the current buffer and appends it to the
named file. If the file doesn't exist, it will be created.

conmand name="apropos", key="ESC ?"

Prompts for a keyword and then prints a |list of those commands
whose short description contains that keyword. For exanpl e,
if you forget which commands deal with wi ndows, just type

" @[ESC- ?] @[wi ndow] @[ESC] ".

and so on

This text consists of groups of non-empty lines, with a simple format for the text within each dnoagp-

ine that we wanted to find the description of the ‘apropos’ command. The problem is to break the file into
individual descriptions, and then to find the description of ‘apropos’ and to print it. The solution is straight-
forward:

XI/(.+\n)+/ g/command name="apropos"/p

conmand name="apropos", key="ESC ?"

Prompts for a keyword and then prints a |list of those commands
whose short description contains that keyword. For exanpl e,
if you forget which commands deal with wi ndows, just type

" @[ESC- ?] @[wi ndow] @[ESC] ".

The regular gpression(.+\n)+ matches one or more lines with one or more characters each, that ist the te
between blank lines, sa/(.+\n)+/ extracts each description; thgicommand name="apropos"/selects
the description for ‘apropos’ anmprints it.

Imagine that we had a C program containing tuéablen, but we wanted to change it tmm. This
command is a first cut:

XIn/ ¢c/num/

but is abviously flawed: it will change alt’s in the file, not just thédentifiern. A better solution is to use
anx command to extract the identifiers, and thengugefind then’s:

Xl[a-zA-Z_][a-zA-Z_0-91*/ g/n/ vl..I c/num/

It looks awful, but it5 fairly easy to understand when read left to rightC identifier is an alphabetic or
underscore followed by zero or more alphanumerics or underscores, that is, matchesgolahexpees-
sion[a-zA-Z_][a-zA-Z_0-9]*. Theg command selects those identifiers contaimpgnd thev is a trick: it
rejects those identifiers containing more than one charddegrce thee/num/ applies only to free-standing
n’s.

There is still a problem here: we dbwiant to change’s that are part of the character constant
There is a commanygl complementary tx, that is just what we neeg/ pattern commanduns the com-
mand on the pieces ofxtebetweenmatches of the pattern; ¥ selects,y rejects. Heres the final

command:
YN/ xl[a-zA-Z_][a-zA-Z_0-91*/ g/n/ vi..I c/Inum/

The yA\n/ (with backslash doubled to malit a literal character) renves the two-character sequenge

from consideration, so the rest of the command will not touch it. There is more we could do here; for
example, anothey could be prefigd to protect comments in the codewvon't elaborate the example yn
further, but you should hae an idea of the way in which the looping and conditional commandsrim

may be composed to do interesting things.

Grouping

There is another way to arrange commarig.enclosing them in brace braatk{}, commands may
be applied in parallelThis example uses trecommand, which reports the line and character numbers of
dot, together witlp, to report on appearancesifacsin our original file:

P

This manual is organized in a rather haphazard manner. The first
several sections were witten hastily in an attenpt to provide a
general introduction to the commands in Enacs and to try to show
the method in the nadness that is the Emacs conmand structure.
XIEmacs/{

+-p
}
3; #171,#176
general introduction to the commands in Enacs and to try to show
4; #234, #239
the method in the madness that is the Emacs conmand structure.

(The number before the semicolon is the line humber; the numbers beginning avéhcharacter num-
bers.) Asa nore interesting example, consider changing all occurrencEsnatsto vi and vice ersa.
We @n type

XIEmacs|vi/{
g/Emacs/ c/vi/
g/vil c/[Emacs/

or even

Xl[a-zA-Z]+/
g/Emacs/ v/......I clvil
g/vil vl...I c/lEmacs/

}

to male sure we dort change strings embedded in words.

Multiple Changes

You might wonder wly, onceEmacshas been changed ¥oin the abee example, the second com-
mand in the braces doesput it back agin. Thereason is that the commands are run in parallel: within
ary top-level samcommand, all changes to the file refer to the state of the file befpd e changes in
that command are made. After all the changes leen determined, thieare all applied simultaneously.

This means, as mentioned, that commands within a compound command see the state of the file
before ay of the changes applyThis method of waluation makes some things easier (such as the
exchange ofEmacsandvi), and some things hardefor instance, it is impossible to use @ommand to
print the changes as thhappen, because thbaven't happened when theis executed. Anindirect rami-
fication is that changes must occur in forward order through the file, and musene.o

-10-

Unix
samhas a f&s commands to connect to Unix processes. The simpléstisich runs the command
with input and output connected to the terminal.

Idate

Wed May 28 23:25:21 EDT 1986
!

(When downloaded, the input is connecteddv/null and only the first f& lines of output are printed;
ary overflow is gored in$HOME/sam.err.) Thefinal ! is a prompt to indicate when the command com-
pletes.

Slightly more interesting i, which provides the current text as standard input to the Unix com-
mand:

1,2 >wc
2 22 131
!

The complement of is, naturally <: it replaces the currentdiewith the standard output of the Unix com-
mand:

1 <date
|

1p
Wed May 28 23:26:44 EDT 1986

The last command is which is a combination of and>: the current text is provided as standard input to
the Unix command, and the Unix commandandard output is collected and used to replace the original
text. For example,

| sort

runssort(1) on the file, sorting the lines of the textimgraphically Note that<, > and| are sam com-
mands, not Unix shell operators.

The next example coerts all appearances &imacsto upper case usirtg(1):
XIEmacs/ | tr a-z A-Z

tr is run once for each occurrenceshacs Of course, you could do this example more efficiently with a
simplec command, but herg’a tickier one: gien a Unix mail box as input, coert all the Subject head-
ers to distinct fortunes:

XI"Subject:.®\n/ x/[":]*\n/ < /usr/games/fortune

(The regular epression™:] refers to ap characterexcept: and newline; the rggtion operator” excludes
newline from the list of charactersAgain, /Jusr/games/fortuneis run once for eacBubjectline, so each
Subjectline is changed to a different fortune.

A few other text commands

For completeness, | should mention three other commands that maniputatd e m command
moves the current text to after the text specified by the (obligatory) address after the command. Thus

/Emacs/+-m 0

moves the next line containingmacsto the beginning of the fileSimilarly, t (another historic character)
copies the text:

/Emacs/+-t0

would make, at the beginning of the file, a g@ the next line containingmacs

-11-

The third command is more interesting: it makes substitutittisssyntax iss/ pattern replace-
ment . Within the current t&, it finds the first occurrence of the pattern and replaces it by the replacement
text, leaving dot set to the entire address of the substitution.

1p
This manual is organized in a rather haphazard manner. The first
s/haphazard/thoughtless/

p
This manual is organized in a rather thoughtless manner. The first

Occurrences of the charac&irin the replacement text stand for the text matching the pattern.

SIT/'&&&&"/

p
"TTTT"his manual is organized in a rather thoughtless manner. The first

There are tw variants. Thdirst is that a number may be specified aftersthe indicate which occurrence
of the pattern to substitute; the default is the first.

s2/is/was/

p
"TTTT"his manual was organi zed in a rather thoughtless manner. The first

The second is that suffixingga(global) causes replacement of all occurrences, not just the first.

sl[a-zA-Z]Ix/g

p
XXX XXX XXXXXX XXX XXXXXXXXX XX X XXXXXX XXXXXXXXXXX XXXXXXX XXX XXXXX

Notice that in all these examples dot is left set to the entire line.

[The substitute command is vital éd, because it is the only way to neathanges within a line. Itis
less valuable iisam in which the concept of a line is much less importdrt. example, may ed substitu-
tion idioms are handled well lsanis basic commands. Consider the commands

s/ good/ bad/
s/ good/ /
s/ good/ & bye/

which are equialent insamto

/ good/ c/ bad/
/ good/ d
/ good/ a/ bye/

and for which the conté search is likely unnecessary because the desired text is already dot. ¥ise, be
thisedidiom:

1, $s/ good/ bad/

which changes the firgfood on each line; the same commandamwill only change the first one in the
whole file. The correcsamversion is

, X s/ good/ bad/
but what is more likely meant is
, X/ good/ c/ bad/

samoperates under different rules.]

Files

So far, we haveonly been working with a single fileubsamis a multi-file editor Only one file may
be edited at a timeubit is easy to change which file is the ‘current’ file for editifig.see haev to do tis,

-12-

we need aamwith a fav files; the easiest way to do this is to start it with a list of Unix file names to edit.

$ echo *.ms
conquest. ns deat h. s enacs. ns fam ne. s sl aughter. s
$ sam -d *.ms

-. conquest. s

('m sorry the Horsemen danéppear in liturgical ordey Theline printed bysamis an indication that the
Unix file conquest.mshas been read, and ismthe current file.sam does not read the Unix file until the
associatedamfile becomes current.

Then command prints the names of all the files:

n
-. conquest. ns
- death.ns
- enacs.ns
- famne.ns
- slaughter.ns

This list is also eailable in the menu on mouse button 3. The comnfaetls the name of just the current
file:

f
-. conqguest. s

The characters to the left of the file name encode helpful information about th&Hdeminus sign
becomes a plus sign if the file has a windwpen, and an asterisk if more than one is opEme period
(another meaning of dot) identifies the current file. The leading blank changes to an apostrophe if the file is
different from the contents of the associated Unix file, as faanaknows. Thisbecomes evident if we

malke a hange.

1d
f

conquest . ns

If the file is restored by an undo command, the apostrophe disappears.
u
f

-. conquest. s

The file name may be changed by providinga name with thé command:

f pestilence.ms
"-. pestilence.ns

f prints the ne status of the file, that is, it changes the name if one is provided, and prints the gandhe re
less. Afile name change may also be undone.

u
f
-. conquest. s
Whensamis downloaded, the current file may be changed simply by selecting the desired file from

the menu (selecting the same file subsequently cycles through the windows opened on @ihdite)ise,
theb command can be used to choose the desired file: T

T A bug prevents theb command from working when dmloaded. Becausthe menu is more coanient ary-
way, and because the method of choosing files from the command language is slated to changehdked b
been fixed.

-13-

b emacs.ms
-. enmmcs. ns

Again, sam prints the name (actuajlgxecutes an implicif command) because the Unix fdenacs.mdgs
being read for the first time. It is an error to ask for asfile doesnt know about, but theB command will
primesams menu with a ne file, and mak it current.

b flood.pic
?no such file ‘flood. pic’
B flood.pic
-. flood. pic
n
- conquest. s
- death.ns
- emmcs. ns
- famine.ns
-. flood. pic
- slaughter.ns

Both b andB will accept a list of file namesh simply takes the first file in the listubB loads them all.
The list may be typed on one line —

B deul.tex satan.tex 666.tex emacs.tex
— or generated by a Unix command —
B <echo *.tex

The latter form requires a Unix commansdm does not understand the shell file name metacharacters, so
B *.tex attempts to load a single file nametéx. (The < form is of course dered from sanis < com-
mand.) echois not the only useful command to run subserviel;tfior example,

B <grep -l Emacs *

will load only those files containing the strifgnacs Finally, a pecial case: 8 with no arguments cre-
ates an empfyameless file withisam

The complement dB is D:
D devil.tex satan.tex 666.tex emacs.tex

eradicates the files fromams memory (not from the Unix machiredsc). D without ary file names
removes the current file fronsam

There are three other commands that relate the current file to UnixTiilesv command writes the
file to disc; without arguments, it writes the entire file to the Unix file associated with the currensdite in
(it is the only command whose default address is not @ftourse, you can specify an address to be writ-
ten, and a different file name, with the obvious syntax:

1,2w /tmp/ewelations
/tp/revel ations: #44

samresponds with the file name and the number of characters written to th€hilevrite command on
the button 3 menu is identical in function to an unadomedmmand.

The other tw commandse andr, read data from Unix filesThe e command clears out the current
file, reads the data from the named file (or uses the currentdilehame if none is explicitly pxaded),
and sets the file namdt’s much like aB command, but puts the information in the current file instead of a
new one. e without ary file name is therefore an easy way to refissins copy of a Unix file. [Unlike in
ed, e doesnt complain if the file is modified. The principle is not to protect against things that can be
undone if wrong.] Since its job is to replace the whole &Rr&ver takes an address.

Ther command is lik e, but it doesrt clear the file: the td in the Unix file replaces dot, or the
specified text if an address iv@i.

-14-

r emacs.ms
has essentially the effect of
<cat emacs.ms

The commands andw will set the name of the file if the current file has no name already defisets
the nameen if the file already has one.

There is a command, analogousxichat iterates wer files instead of pieces ofxte X (capitalx).
The syntax is easy; #'just like that of x — X/ pattern’ command (The complementary command Ys
analogous toy.) Theeffect is to run the command in each file whose menu entry (that is, whose line
printed by arf command) matches the patteffor example, since an apostrophe identifies modified files,

Xl w

writes the changed files out to disc. Here is a longamele: find all uses of a particular variable in the C
source files:

XN\.c$/ xlvariable/+-p
We @an use af command to identify which file the variable appears in:

XN.c$/ ,g/variable/ {
f
Xlvariable/+-{

P
}

Here, theg command guarantees that only the names of files containingatiadle will be printed (lot
beware thatsammay confuse matters by printing the names of files it reads in during the comriaed).
= command shows where in the file the variable appears, apccttramand prints the line.

The D command is handy as the target oPanThis example deletes from the menu all C files that
do not contain a particular variable:

XN.c$/ ,vivariable/ D

If no pattern is provided for the, the command (which defaults fipis run in all files, so
XD

cleanssamup for a fresh start.

But rather than working srfurther let's gop now:

q
$

Some of the file manipulating commands can be undone: undding er r restores the pwous
state of the file, but, B andD are irreyocable. Andof course, so ig.

