
A tutorial for the sam command language

Rob Pike

ABSTRACT

sam is an interactive text editor with a command language that makes heavy use of
regular expressions. Althoughthe language is syntactically similar toed(1), the details
are interestingly different. Thistutorial introduces the command language, but does not
discuss the screen and mouse interface. With apologies to those unfamiliar with the
Ninth Edition Blit software, it is assumed that the similarity ofsam to mux(9) at this
level makessam’s mouse language easy to learn.

The sam command language applies identically to two environments: when run-
ning samon an ordinary terminal (via sam -d), and in the command window of a down-
loadedsam, that is, one using the bitmap display and mouse.

Introduction

This tutorial describes the command language ofsam, an interactive text editor that runs on Blits and
some computers with bitmap displays.For most editing tasks, the mouse-based editing features are suffi-
cient, and they are easy to use and to learn.

The command language is often useful, however, particularly when making global changes.Unlike
the commands ined, which are necessary to make changes,samcommands tend to be used only for com-
plicated or repetitive editing tasks. It is in these more involved uses that the differences betweensam and
other text editors are most evident.

sam’s language makes it easy to do some things that other editors, including programs like sedand
awk, do not handle gracefully, so this tutorial serves partly as a lesson insam’s manner of manipulating
text. Theexamples below therefore concentrate entirely on the language, assuming that facility with the
use of the mouse insam is at worst easy to pick up. In fact,samcan be run without the mouse at all (not
downloaded), by specifying the-d flag, and it is this domain that the tutorial occupies; the command lan-
guage in these modes are identical.

A word to the Unix adept: althoughsam is syntactically very similar toed, it is fundamentally and
deliberately different in design and detailed semantics.You might use knowledge ofed to predict how the
substitute command works, but you’d only be right if you had used some understanding ofsam’s workings
to influence your prediction. Be particularly careful about idioms. Idioms form in curious nooks of lan-
guages and depend on undependable peculiarities.ed idioms simply don’t work in sam: 1,$s/a/b/makes
one substitution in the whole file, not one per line.sam has its own idioms. Much of the purpose of this
tutorial is to publish them and make fluency in sama matter of learning, not cunning.

The tutorial depends on familiarity with regular expressions, although some experience with a more
traditional Unix editor may be helpful.To aid readers familiar withed, I hav epointed out in square brack-
ets [] some of the relevant differences betweened and sam. Read these comments only if you wish to
understand the differences; the lesson is aboutsam, not sam vs. ed. Another typographic convention is
that output appears inthis font, while typed input appears asslanty text.

Nomenclature:samkeeps a copy of the text it is editing. This copy is called afile. To avoid confu-
sion, I have called the permanent storage on disc aUnix file.

-2-

Text

To get started, we need some text to play with.Any text will do; try something from James Gosling’s
Emacs manual:

$ sam -d
a
This manual is organized in a rather haphazard manner. The first
several sections were written hastily in an attempt to provide a
general introduction to the commands in Emacs and to try to show
the method in the madness that is the Emacs command structure.
.

sam -dstartssam running. Thea command adds text until a line containing just a period, and sets thecur-
rent text (also calleddot) to what was typed — everything between thea and the period.[ed would leave
dot set to only the last line.] Thep command prints the current text:

p
This manual is organized in a rather haphazard manner. The first
several sections were written hastily in an attempt to provide a
general introduction to the commands in Emacs and to try to show
the method in the madness that is the Emacs command structure.

[Again, ed would print only the last line.]Thea command adds its text after dot; thei command is like a,
but adds the textbeforedot.

i
Introduction
.
p
Introduction

There is also ac command that changes (replaces) the current text, andd that deletes it; these are illustrated
below.

To see all the text, we can specify what text to print; for the moment, suffice it to say that0,$ speci-
fies the entire file. [edusers would probably type1,$, which in practice is the same thing, but see below.]

0,$p
Introduction
This manual is organized in a rather haphazard manner. The first
several sections were written hastily in an attempt to provide a
general introduction to the commands in Emacs and to try to show
the method in the madness that is the Emacs command structure.

Except for thew command described below, all commands, includingp, set dot to the text they touch.
Thus,a andi set dot to the new text, p to the text printed, and so on.Similarly, all commands (exceptw) by
default operate on the current text [unlike ed, for which some commands (such asg) default to the entire
file].

Things are not going to get very interesting until we can set dot arbitrarily. This is done by
addresses, which specify a piece of the file. The address1, for example, sets dot to the first line of the file.

1p
Introduction
c
Preamble
.

Thec command didn’t need to specify dot; thep left it on line one.It’s therefore easy to delete the first line
utterly; the last command left dot set to line one:

-3-

d
1p
This manual is organized in a rather haphazard manner. The first

(Line numbers change to reflect changes to the file.)

The address/text/ sets dot to the first appearance oftext, after dot. [ed matches the first line con-
tainingtext.] If text is not found, the search restarts at the beginning of the file and continues until dot.

/Emacs/p
Emacs

It’s difficult to indicate typographically, but in this example no newline appears afterEmacs: the text to be
printed is the string ‘Emacs’, exactly. (The finalp may be left off — it is the default command.When
downloaded, however, the default is instead to select the text, to highlight it, and to make it visible by mov-
ing the window on the file if necessary. Thus,/Emacs/ indicates on the display the next occurrence of the
text.)

Imagine we wanted to change the word haphazard to thoughtless. Obviously, what’s needed is
anotherc command, but the method used so far to insert text includes a newline. Thesyntax for including
text without newlines is to surround the text with slashes (which is the same as the syntax for text searches,
but what is going on should be clear from context). Thetext must appear immediately after thec (or a or i).
Given this, it is easy to make the required change:

/haphazard/c/thoughtless/
1p
This manual is organized in a rather thoughtless manner. The first

[Changes can always be done with ac command, even if the text is smaller than a line].You’ll find that this
way of providing text to commands is much more common than is the multiple-lines syntax.If you want to
include a slash/ in the text, just precede it with a backslash\, and use a backslash to protect a backslash
itself.

/Emacs/c/Emacs\\360/
4p
general introduction to the commands in Emacs\360 and to try to show

We could also make this particular change by

/Emacs/a/\\360/

This is as good a place as any to introduce theu command, which undoes the last command.A sec-
ondu will undo the penultimate command, and so on.

u
4p
general introduction to the commands in Emacs and to try to show
u
3p
This manual is organized in a rather haphazard manner. The first

Undoing can only back up; there is no way to undo a previousu.

Addresses

We’v e seen the simplest forms of addresses, but there is more to learn before we can get too much
further. An address selects a region in the file — a substring — and therefore must define the beginning
and the end of a region. Thus,the address13 selects from the beginning of line thirteen to the end of line
thirteen, and/Emacs/selects from the beginning of the word ‘Emacs’ to the end.

Addresses may be combined with a comma:

-4-

13,15

selects lines thirteen through fifteen.The definition of the comma operator is to select from the beginning
of the left hand address (the beginning of line 13) to the end of the right hand address (the end of line 15).

A few special simple addresses come in handy:. (a period) represents dot, the current text, 0 (line
zero) selects the null string at the beginning of the file, and$ selects the null string at the end of the file [not
the last line of the file]. Therefore,

0,13

selects from the beginning of the file to the end of line thirteen,

.,$

selects from the beginning of the current text to the end of the file, and

0,$

selects the whole file [that is, a single string containing the whole file, not a list of all the lines in the file].

These are allabsoluteaddresses: they refer to specific places in the file.sam also has relative
addresses, which depend on the value of dot, and in fact we have already seen one form:/Emacs/finds the
first occurrence ofEmacssearching forwards from dot. Which occurrence ofEmacs it finds depends on
the value of dot. What if you wanted the first occurrencebefore dot? Justprecede the pattern with a minus
sign, which reverses the direction of the search:

-/Emacs/

In fact, the complete syntax for forward searching is

+/Emacs/

but the plus sign is the default, and in practice is rarely used. Here is an example that includes it for clarity:

0+/Emacs/

selects the first occurrence ofEmacs in the file; read it as ‘‘go to line 0, then search forwards forEmacs.’’
Since the+ is optional, this can be written0/Emacs/. Similarly,

$-/Emacs/

finds the last occurrence in the file, so

0/Emacs/,$-/Emacs/

selects the text from the first to lastEmacs, inclusive. Slightly more interesting:

/Emacs/+/Emacs/

(there is an implicit.+ at the beginning) selects the secondEmacsfollowing dot.

Line numbers may also be relative.

-2

selects the second previous line, and

+5

selects the fifth following line (here the plus sign is obligatory).

Since addresses may select (and dot may be) more than one line, we need a definition of ‘previous’
and ‘following:’ ‘previous’ meansbefore the beginningof dot, and ‘following’ meansafter the endof dot.
For example, if the file containsAAAA, with dot set to the middle two A’s (the slanting characters),-/A/
sets dot to the firstA, and +/A/ sets dot to the lastA. Except under odd circumstances (such as when the
only occurrence of the text in the file is already the current text), the text selected by a search will be dis-
joint from dot.

-5-

To select thetroff -ms paragraph containing dot, however long it is, use

-/.PP/,/.PP/-1

which will include the.PP that begins the paragraph, and exclude the one that ends it.

When typing relative line number addresses, the default number is1, so the above could be written
slightly more simply:

-/.PP/,/.PP/-

What does the address+1-1 or the equivalent +- mean? Itlooks like it does nothing, but recall that
dot need not be a complete line of text. +1 selects the line after the end of the current text, and-1 selects
the line before the beginning. Therefore+1-1selects the line before the line after the end of dot, that is, the
complete line containing the end of dot.We can use this construction to expand a selection to include a
complete line, say the first line in the file containingEmacs:

0/Emacs/+-p
general introduction to the commands in Emacs and to try to show

The address+- is an idiom.

Loops

Above, we changed one occurrence ofEmacs to Emacs\360, but if the name of the editor is really
changing, it would be useful to changeall instances of the name in a single command.sam provides a
command,x (extract), for just that job. The syntax isx/pattern/command. For each occurrence of the
pattern in the selected text, x sets dot to the occurrence and runs command.For example, to changeEmacs
to vi,

0,$x/Emacs/c/vi/
0,$p
This manual is organized in a rather haphazard manner. The first
several sections were written hastily in an attempt to provide a
general introduction to the commands in vi and to try to show
the method in the madness that is the vi command structure.

This works by subdividing the current text (0,$ — the whole file) into appearances of its textual argument
(Emacs), and then running the command that follows (c/vi/) with dot set to the text. We can read this
example as, ‘‘find all occurrences ofEmacs in the file, and for each one, set the current text to the occur-
rence and run the commandc/vi/, which will replace the current text byvi.’’ [This command is somewhat
similar to ed’s g command. Thedifferences will develop below, but note that the default address, as
always, is dot rather than the whole file.]

A single u command is sufficient to undo anx command, regardless of how many individual changes
thex makes.

u
0,$p
This manual is organized in a rather haphazard manner. The first
several sections were written hastily in an attempt to provide a
general introduction to the commands in Emacs and to try to show
the method in the madness that is the Emacs command structure.

Of course,c is not the only commandx can run.An a command can be used to put proprietary mark-
ings onEmacs:

0,$x/Emacs/a/{TM}/
/Emacs/+-p
general introduction to the commands in Emacs{TM} and to try to show

[There is no way to see the changes as they happen, as ined’s g/Emacs/s//&{TM}/p; see the section on

-6-

Multiple Changes, below.]

Thep command is also useful when driven by an x, but be careful that you say what you mean;

0,$x/Emacs/p
EmacsEmacs

sincex sets dot to the text in the slashes, printing only that text is not going to be very informative. But the
command thatx runs can contain addresses.For example, if we want to print all lines containingEmacs,
just use+-:

0,$x/Emacs/+-p
general introduction to the commands in Emacs{TM} and to try to show
the method in the madness that is the Emacs{TM} command structure.

Finally, let’s restore the state of the file with anotherx command, and make use of a handy shorthand: a
comma in an address has its left side default to0, and its right side default to$, so the easy-to-type address,
refers to the whole file:

,x/Emacs/ /{TM}/d
,p
This manual is organized in a rather haphazard manner. The first
several sections were written hastily in an attempt to provide a
general introduction to the commands in Emacs and to try to show
the method in the madness that is the Emacs command structure.

Notice what thisx does: for each occurrence of Emacs, find the{TM} that follows, and delete it.

The ‘text’ sam accepts for searches in addresses and inx commands is not simple text, but rather
regular expressions.Unix has several distinct interpretations of regular expressions. Theform used by
sam is that ofregexp(6), including parentheses() for grouping and an ‘or’ operator| for matching strings in
parallel. sam also matches the character sequence\n with a newline character. Replacement text, such as
used in thea andc commands, is still plain text, but the sequence\n represents newline in that context, too.

Here is an example. Saywe wanted to double space the document, that is, turn every newline into
two newlines. Thefollowing all do the job:

,x/\n/ a/\n/
,x/\n/ c/\n\n/
,x/$/ a/\n/
,x/ˆ/ i/\n/

The last example is slightly different, because it puts a newline beforeeach line; the other examples place it
after. The first two examples manipulate newlines directly [something outsideed’s ken]; the last two use
regular expressions:$ is the empty string at the end of a line, whileˆ is the empty string at the beginning.

These solutions all have a possible drawback: if there is already a blank line (that is, two consecutive
newlines), they make it much larger (four consecutive newlines). Abetter method is to extend every group
of newlines by one:

,x/\n+/ a/\n/

The regular expression operator+ means ‘one or more;’\n+ is identical to\n\n* . Thus, this example takes
ev ery sequence of newlines and adds another to the end.

A more common example is indenting a block of text by a tab stop. The following all work, although
the first is arguably the cleanest (the blank text in slashes is a tab):

,x/ˆ/a/ /
,x/ˆ/c/ /
,x/.*\n/i/ /

The last example uses the pattern (idiom, really).*\n to match lines:.* matches the longest possible string
of non-newline characters.Taking initial tabs away is just as easy:

-7-

,x/ˆ /d

In these examples I have specified an address (the whole file), but in practice commands like these are more
likely to be run without an address, using the value of dot set by selecting text with the mouse.

Conditionals

Thex command is a looping construct: for each match of a regular expression, it extracts (sets dot to)
the match and runs a command.samalso has a conditional,g: g/pattern/commandruns the command if
dot contains a match of the patternwithout changing the value of dot.The inverse,v, runs the command if
dot doesnot contain a match of the pattern. (The lettersg andv are historical and have no mnemonic sig-
nificance. You might think ofg as ‘guard.’) [ed users should read the above definitions very carefully; the
g command insam is fundamentally different from that ined.] Here is an example of the difference
betweenx andg:

,x/Emacs/c/vi/

changes each occurrence of the wordEmacsin the file to the wordvi, but

,g/Emacs/c/vi/

changes thewhole fileto vi if there is the wordEmacsanywhere in the file.

Neither of these commands is particularly interesting in isolation, but they are valuable when com-
bined withx and with themselves.

Composition

One way to think about thex command is that, given a selection (a value of dot) it iterates through
interesting subselections (values of dot within). In other words, it takes a piece of text and cuts it into
smaller pieces. But the text that it cuts up may already be a piece cut by a previousx command or selected
by ag. sam’s most interesting property is the ability to define a sequence of commands to perform a partic-
ular task.†A simple example is to change all occurrences ofEmacsto emacs; certainly the command

,x/Emacs/ c/emacs/

will work, but we can use anx command to save retyping most of the wordEmacs:

,x/Emacs/ x/E/ c/e/

(Blanks can be used to separate commands on a line to make them easier to read.)What this command
does is find all occurrences ofEmacs(,x/Emacs/), and thenwith dot set to that text, find all occurrences of
the letterE (x/E/), and thenwith dot set to that text, run the commandc/e/ to change the character to lower
case. Notethat the address for the command — the whole file, specified by a comma — is only given to
the leftmost piece of the command; the rest of the pieces have dot set for them by the execution of the
pieces to their left.

As another simple example, consider a problem solved above: printing all lines in the file containing
the wordEmacs:

,x/.*\n/ g/Emacs/p
general introduction to the commands in Emacs and to try to show
the method in the madness that is the Emacs command structure.

This command says to break the file into lines (,x/.*\n/), and for each line that contains the stringEmacs
(g/Emacs/), run the commandp with dot set to the line (not the match ofEmacs), which prints the line.To
save typing, because.*\n is a common pattern inx commands, if thex is followed immediately by a space,
the pattern.*\n is assumed. Therefore, the above could be written more succinctly:

† The obvious analogy with shell pipelines is only partially valid, because the individual samcommands are all
working on the same text; it is only how the text is sliced up that is changing.

-8-

,x g/Emacs/p

The solution we used before was

,x/Emacs/+-p

which runs the command+-p with dot set to each match ofEmacs in the file (recall that the idiom+-p
prints the line containing the end of dot).

The two commands usually produce the same result (the+-p form will print a line twice if it contains
Emacs twice). Whichis better?,x/Emacs/+-pis easier to type and will be much faster if the file is large
and there are few occurrences of the string, but it is really an odd special case.,x/.*\n/ g/Emacs/pis slower
— it breaks each line out separately, then examines it for a match — but is conceptually cleaner, and gener-
alizes more easily. For example, consider the following piece of the Emacs manual:

command name="append-to-file", key="[unbound]"
Takes the contents of the current buffer and appends it to the
named file. If the file doesn’t exist, it will be created.

command name="apropos", key="ESC-?"
Prompts for a keyword and then prints a list of those commands
whose short description contains that keyword. For example,
if you forget which commands deal with windows, just type
"@b[ESC-?]@t[window]@b[ESC]".

and so on

This text consists of groups of non-empty lines, with a simple format for the text within each group.Imag-
ine that we wanted to find the description of the ‘apropos’ command. The problem is to break the file into
individual descriptions, and then to find the description of ‘apropos’ and to print it. The solution is straight-
forward:

,x/(.+\n)+/ g/command name="apropos"/p
command name="apropos", key="ESC-?"
Prompts for a keyword and then prints a list of those commands
whose short description contains that keyword. For example,
if you forget which commands deal with windows, just type
"@b[ESC-?]@t[window]@b[ESC]".

The regular expression(.+\n)+ matches one or more lines with one or more characters each, that is, the text
between blank lines, so,x/(.+\n)+/ extracts each description; theng/command name="apropos"/selects
the description for ‘apropos’ andp prints it.

Imagine that we had a C program containing the variablen, but we wanted to change it tonum. This
command is a first cut:

,x/n/ c/num/

but is obviously flawed: it will change alln’s in the file, not just theidentifiern. A better solution is to use
anx command to extract the identifiers, and then useg to find then’s:

,x/[a-zA-Z_][a-zA-Z_0-9]*/ g/n/ v/../ c/num/

It looks awful, but it’s fairly easy to understand when read left to right.A C identifier is an alphabetic or
underscore followed by zero or more alphanumerics or underscores, that is, matches of the regular expres-
sion [a-zA-Z_][a-zA-Z_0-9]* . Theg command selects those identifiers containingn, and thev is a trick: it
rejects those identifiers containing more than one character. Hence thec/num/ applies only to free-standing
n’s.

There is still a problem here: we don’t want to changen’s that are part of the character constant\n.
There is a commandy, complementary tox, that is just what we need:y/pattern/commandruns the com-
mand on the pieces of text betweenmatches of the pattern; ifx selects,y rejects. Hereis the final

-9-

command:

,y/\\n/ x/[a-zA-Z_][a-zA-Z_0-9]*/ g/n/ v/../ c/num/

The y/\\n/ (with backslash doubled to make it a literal character) removes the two-character sequence\n
from consideration, so the rest of the command will not touch it. There is more we could do here; for
example, anothery could be prefixed to protect comments in the code.I won’t elaborate the example any
further, but you should have an idea of the way in which the looping and conditional commands insam
may be composed to do interesting things.

Grouping

There is another way to arrange commands.By enclosing them in brace brackets{} , commands may
be applied in parallel.This example uses the= command, which reports the line and character numbers of
dot, together withp, to report on appearances ofEmacsin our original file:

,p
This manual is organized in a rather haphazard manner. The first
several sections were written hastily in an attempt to provide a
general introduction to the commands in Emacs and to try to show
the method in the madness that is the Emacs command structure.
,x/Emacs/{

=
+-p

}
3; #171,#176
general introduction to the commands in Emacs and to try to show
4; #234,#239
the method in the madness that is the Emacs command structure.

(The number before the semicolon is the line number; the numbers beginning with# are character num-
bers.) Asa more interesting example, consider changing all occurrences ofEmacs to vi and vice versa.
We can type

,x/Emacs|vi/{
g/Emacs/ c/vi/
g/vi/ c/Emacs/

}

or even

,x/[a-zA-Z]+/{
g/Emacs/ v/....../ c/vi/
g/vi/ v/.../ c/Emacs/

}

to make sure we don’t change strings embedded in words.

Multiple Changes

You might wonder why, onceEmacshas been changed tovi in the above example, the second com-
mand in the braces doesn’t put it back again. Thereason is that the commands are run in parallel: within
any top-level samcommand, all changes to the file refer to the state of the file before any of the changes in
that command are made. After all the changes have been determined, they are all applied simultaneously.

This means, as mentioned, that commands within a compound command see the state of the file
before any of the changes apply. This method of evaluation makes some things easier (such as the
exchange ofEmacsandvi), and some things harder. For instance, it is impossible to use ap command to
print the changes as they happen, because they hav en’t happened when thep is executed. Anindirect rami-
fication is that changes must occur in forward order through the file, and must not overlap.

-10-

Unix

samhas a few commands to connect to Unix processes. The simplest is!, which runs the command
with input and output connected to the terminal.

!date
Wed May 28 23:25:21 EDT 1986
!

(When downloaded, the input is connected to/dev/null and only the first few lines of output are printed;
any overflow is stored in$HOME/sam.err.) Thefinal ! is a prompt to indicate when the command com-
pletes.

Slightly more interesting is>, which provides the current text as standard input to the Unix com-
mand:

1,2 >wc
2 22 131

!

The complement of> is, naturally, <: it replaces the current text with the standard output of the Unix com-
mand:

1 <date
!
1p
Wed May 28 23:26:44 EDT 1986

The last command is|, which is a combination of< and>: the current text is provided as standard input to
the Unix command, and the Unix command’s standard output is collected and used to replace the original
text. For example,

,| sort

runssort(1) on the file, sorting the lines of the text lexicographically. Note that<, > and | aresam com-
mands, not Unix shell operators.

The next example converts all appearances ofEmacsto upper case usingtr (1):

,x/Emacs/ | tr a-z A-Z

tr is run once for each occurrence ofEmacs. Of course, you could do this example more efficiently with a
simplec command, but here’s a trickier one: given a Unix mail box as input, convert all theSubject head-
ers to distinct fortunes:

,x/ˆSubject:.*\n/ x/[ˆ:]*\n/ < /usr/games/fortune

(The regular expression[ˆ:] refers to any characterexcept : and newline; the negation operator̂ excludes
newline from the list of characters.)Again, /usr/games/fortuneis run once for eachSubject line, so each
Subject line is changed to a different fortune.

A few other text commands

For completeness, I should mention three other commands that manipulate text. The m command
moves the current text to after the text specified by the (obligatory) address after the command. Thus

/Emacs/+- m 0

moves the next line containingEmacsto the beginning of the file.Similarly, t (another historic character)
copies the text:

/Emacs/+- t 0

would make, at the beginning of the file, a copy of the next line containingEmacs.

-11-

The third command is more interesting: it makes substitutions.Its syntax iss/pattern/replace-
ment/. Within the current text, it finds the first occurrence of the pattern and replaces it by the replacement
text, leaving dot set to the entire address of the substitution.

1p
This manual is organized in a rather haphazard manner. The first
s/haphazard/thoughtless/
p
This manual is organized in a rather thoughtless manner. The first

Occurrences of the character& in the replacement text stand for the text matching the pattern.

s/T/"&&&&"/
p
"TTTT"his manual is organized in a rather thoughtless manner. The first

There are two variants. Thefirst is that a number may be specified after thes, to indicate which occurrence
of the pattern to substitute; the default is the first.

s2/is/was/
p
"TTTT"his manual was organized in a rather thoughtless manner. The first

The second is that suffixing ag (global) causes replacement of all occurrences, not just the first.

s/[a-zA-Z]/x/g
p
"xxxx"xxx xxxxxx xxx xxxxxxxxx xx x xxxxxx xxxxxxxxxxx xxxxxxx xxx xxxxx

Notice that in all these examples dot is left set to the entire line.

[The substitute command is vital toed,because it is the only way to make changes within a line. It is
less valuable insam, in which the concept of a line is much less important.For example, many ed substitu-
tion idioms are handled well bysam’s basic commands. Consider the commands

s/good/bad/
s/good//
s/good/& bye/

which are equivalent insamto

/good/c/bad/
/good/d
/good/a/ bye/

and for which the context search is likely unnecessary because the desired text is already dot. Also, beware
thised idiom:

1,$s/good/bad/

which changes the firstgoodon each line; the same command insamwill only change the first one in the
whole file. The correctsamversion is

,x s/good/bad/

but what is more likely meant is

,x/good/ c/bad/

samoperates under different rules.]

Files

So far, we hav eonly been working with a single file, but sam is a multi-file editor. Only one file may
be edited at a time, but it is easy to change which file is the ‘current’ file for editing.To see how to do this,

-12-

we need asamwith a few files; the easiest way to do this is to start it with a list of Unix file names to edit.

$ echo *.ms
conquest.ms death.ms emacs.ms famine.ms slaughter.ms
$ sam -d *.ms
-. conquest.ms

(I’m sorry the Horsemen don’t appear in liturgical order.) Theline printed bysam is an indication that the
Unix file conquest.mshas been read, and is now the current file.samdoes not read the Unix file until the
associatedsamfile becomes current.

Then command prints the names of all the files:

n
-. conquest.ms
- death.ms
- emacs.ms
- famine.ms
- slaughter.ms

This list is also available in the menu on mouse button 3. The commandf tells the name of just the current
file:

f
-. conquest.ms

The characters to the left of the file name encode helpful information about the file.The minus sign
becomes a plus sign if the file has a window open, and an asterisk if more than one is open.The period
(another meaning of dot) identifies the current file. The leading blank changes to an apostrophe if the file is
different from the contents of the associated Unix file, as far assam knows. Thisbecomes evident if we
make a change.

1d
f
’-. conquest.ms

If the file is restored by an undo command, the apostrophe disappears.

u
f
-. conquest.ms

The file name may be changed by providing a new name with thef command:

f pestilence.ms
’-. pestilence.ms

f prints the new status of the file, that is, it changes the name if one is provided, and prints the name regard-
less. Afile name change may also be undone.

u
f
-. conquest.ms

Whensam is downloaded, the current file may be changed simply by selecting the desired file from
the menu (selecting the same file subsequently cycles through the windows opened on the file).Otherwise,
theb command can be used to choose the desired file:†

† A bug prevents theb command from working when downloaded. Becausethe menu is more convenient any-
way, and because the method of choosing files from the command language is slated to change, the bug hasn’t
been fixed.

-13-

b emacs.ms
-. emacs.ms

Again, sam prints the name (actually, executes an implicitf command) because the Unix fileemacs.msis
being read for the first time. It is an error to ask for a filesamdoesn’t know about, but theB command will
primesam’s menu with a new file, and make it current.

b flood.pic
?no such file ‘flood.pic’
B flood.pic
-. flood.pic

n
- conquest.ms
- death.ms
- emacs.ms
- famine.ms
-. flood.pic
- slaughter.ms

Both b andB will accept a list of file names.b simply takes the first file in the list, but B loads them all.
The list may be typed on one line —

B devil.tex satan.tex 666.tex emacs.tex

— or generated by a Unix command —

B <echo *.tex

The latter form requires a Unix command;samdoes not understand the shell file name metacharacters, so
B *.tex attempts to load a single file named*.tex. (The < form is of course derived from sam’s < com-
mand.) echois not the only useful command to run subservient toB; for example,

B <grep -l Emacs *

will load only those files containing the stringEmacs. Finally, a special case: aB with no arguments cre-
ates an empty, nameless file withinsam.

The complement ofB is D:

D devil.tex satan.tex 666.tex emacs.tex

eradicates the files fromsam’s memory (not from the Unix machine’s disc). D without any file names
removes the current file fromsam.

There are three other commands that relate the current file to Unix files.Thew command writes the
file to disc; without arguments, it writes the entire file to the Unix file associated with the current file insam
(it is the only command whose default address is not dot).Of course, you can specify an address to be writ-
ten, and a different file name, with the obvious syntax:

1,2w /tmp/revelations
/tmp/revelations: #44

sam responds with the file name and the number of characters written to the file.The write command on
the button 3 menu is identical in function to an unadornedw command.

The other two commands,e andr , read data from Unix files.Thee command clears out the current
file, reads the data from the named file (or uses the current file’s old name if none is explicitly provided),
and sets the file name.It’s much like aB command, but puts the information in the current file instead of a
new one. e without any file name is therefore an easy way to refreshsam’s copy of a Unix file. [Unlike in
ed, e doesn’t complain if the file is modified. The principle is not to protect against things that can be
undone if wrong.] Since its job is to replace the whole text,enever takes an address.

The r command is like e, but it doesn’t clear the file: the text in the Unix file replaces dot, or the
specified text if an address is given.

-14-

r emacs.ms

has essentially the effect of

<cat emacs.ms

The commandsr andw will set the name of the file if the current file has no name already defined;e sets
the name even if the file already has one.

There is a command, analogous tox, that iterates over files instead of pieces of text: X (capitalx).
The syntax is easy; it’s just like that of x — X/pattern/command. (The complementary command isY,
analogous toy.) The effect is to run the command in each file whose menu entry (that is, whose line
printed by anf command) matches the pattern.For example, since an apostrophe identifies modified files,

X/’/ w

writes the changed files out to disc. Here is a longer example: find all uses of a particular variable in the C
source files:

X/\.c$/ ,x/variable/+-p

We can use anf command to identify which file the variable appears in:

X/\.c$/ ,g/variable/ {
f
,x/variable/+-{

=
p

}
}

Here, theg command guarantees that only the names of files containing the variable will be printed (but
beware thatsammay confuse matters by printing the names of files it reads in during the command).The
= command shows where in the file the variable appears, and thep command prints the line.

TheD command is handy as the target of anX. This example deletes from the menu all C files that
do not contain a particular variable:

X/\.c$/ ,v/variable/ D

If no pattern is provided for theX, the command (which defaults tof) is run in all files, so

X D

cleanssamup for a fresh start.

But rather than working any further, let’s stop now:

q
$

Some of the file manipulating commands can be undone: undoing af, e, or r restores the previous
state of the file, butw, B andD are irrevocable. And,of course, so isq.

