
Mk: a successor tomake

Andrew Hume

ABSTRACT

Mk is an efficient general tool for describing and maintaining dependencies
between files or programs.Mk is styled on, and largely compatible with, theUNIX† tool
make. The major advantages ofmk over make are executing recipes in parallel, using
pattern-matching metarules rather than suffix transformation rules, and deriving depen-
dencies by transitive closure on all rules.Mk runs anywhere from 2 to 30 times faster
thanmake.

This report describesmk by means of an evolving example. Other sections sum-
marize the differences betweenmk andmakeand discuss the principles underlyingmk’s
design.

1. Intr oduction

A large fraction of computer activity consists of repeated application of tools (special or general pur-
pose programs) to input files to produce output files. The most obvious example is programming, but other
no less important examples range from simple document-processing pipelines to the generation of a circuit
board or integrated circuit involving hundreds of files. Common to all these activities are file dependen-
cies, where changing a file requires that other files be remade.Mk reads a dependency description (called a
mkfile) and does the minimal work necessary to bring a target file up to date.

Mk owes much tomake, written by Stu Feldman, which has been doing a similar job onUNIX sys-
tems since 1976. The version ofmake referred to throughout this report is Feldman’s research version dis-
tributed with ResearchUNIX , Eighth Edition and is substantially more advanced than the versions found
found in System V or BerkeleyUNIX systems.

The next section is rather long.It follows the gradual development of a somewhat complicated
mkfile describing how to build a C program. It is followed by a section on fancy uses ofmk. The fourth
section summarizes the differences betweenmk andmake and includes a comparison of execution times.
The fifth section highlights the principles underlyingmk. The appendix documents the predefined or
builtin variables and rules formk.

2. An Extended Example

This section describesmk in the context of building C programs.This is for the reader’s comfort;
mk knows nothing special about C programs.The example starts off small and simple and is extended
throughout the section.Sometimes,mk’s behavior is best demonstrated by excerpts from a terminal ses-
sion. Thesewill be shown as

$ date
Fri Feb 20 20:06:03 EST 1987
$

where$ is the prompt for the next command. Comments will be shown initalics .

rrrrrrrrrrrrrrrrrr
† UNIX is a trademark of Bell Laboratories.

1

Initially, our program is calledprog and is made froma.o andb.o, which are made by compilinga.c
andb.c respectively. In addition,b.c includes a header fileprog.h. We represent these relationships picto-
rially below

prog

a.o

a.c

b.o

prog.h b.c
The arrow means ‘‘depends on.’’ Thus,prog depends ona.o andb.o and if a.o or b.o is modified, then
prog needs to be rebuilt. Similarly,a.odepends ona.candb.o depends onb.c andprog.h.

The textual description of howprog is built is kept in amkfile and looks like

prog: a.ob.o
cc -o prog a.o b.o

a.o: a.c
cc -c a.c

b.o: b.cprog.h
cc -c b.c

The mkfile is a sequence ofrules. Each rule defines a target (sayprog) that depends on some prerequisites
(a.o andb.o) and the commands (a shell script called therecipe) to bring the target up to date.Mk takes
this description from a file namedmkfile and builds the given targets. Ifno targets are given on the com-
mand line, the first target in the mkfile is built. For example, if we start with just the source files in our
directory,mk createsprog by compilinga.candb.c.

$ mk
cc -c a.c
cc -c b.c
cc -o prog a.o b.o
$

Executingmk again does nothing, asprog is now up to date.

$ mk
mk: ‘prog’ is up to date
$

If we change a source file,mk rebuilds only the files that are out of date:

modify a.c
$ mk
cc -c a.c
cc -o prog a.o b.o
$

Mk will explain why it is rebuilding a file if we use the-eoption. Forexample,

modify prog.h
$ mk -e
b.o(540869437) < prog.h(540869535)
cc -c b.c
prog(540869493) < b.o(540869546)
cc -o prog a.o b.o
$

Thus,b.o was out of date with respect toprog.h. After b.o was remade,prog was found to be out of date
with respect tob.o and was then rebuilt. The numbers are the actual time stamps of the files: the values are
not as important as the difference between them.A time stamp of zero indicates a non-existent file.

2

Variables

Suppose we now need to compile the source files with the-g flag so that we can use the debugger.
We can of course simply edit each rule to changecc into cc -g:

prog: a.ob.o
cc -g -o prog a.o b.o

a.o: a.c
cc -g -c a.c

b.o: b.cprog.h
cc -g -c b.c

A better solution is to use avariable. A mk variable has a similar form and use to a shell variable.A suit-
able (mnemonic) name isCFLAGS. The new mkfile looks like this:

CFLAGS=-g
prog: a.ob.o

cc $CFLAGS -o prog a.o b.o
a.o: a.c

cc $CFLAGS -c a.c
b.o: b.cprog.h

cc $CFLAGS -c b.c

Now, if we want to profileprog (which means compiling everything with the-p option), we need only
change the first line to

CFLAGS=-g -p

and recompile all the object files. The easiest way to recompile everything is withmk -a which says to
always make every target regardless of time stamps.

Some variables are supplied bymk for use by the recipe. One isprereq whose value is all the pre-
requisites for this rule.We can rewrite the first rule like this:

prog: a.ob.o
cc $CFLAGS -o prog $prereq

This guarantees that the lists of object files (the prerequisite line and the cc line) are the same.It is now
easy to incorporate a new object filec.oby adding the new name just once:

CFLAGS=-g -p
prog: a.ob.o c.o

cc $CFLAGS -o prog $prereq
a.o: a.c

cc $CFLAGS -c a.c
b.o: b.cprog.h

cc $CFLAGS -c b.c
c.o: c.cprog.h

cc $CFLAGS -c c.c

Metarules

The preceding rules for the.o files are very similar. Mk supportsmetarules, that is, rules that apply
to a class of targets, rather than just one specific target. Theclass of targets is defined by pattern matching,
with the symbol% (called the stem) equivalent to the regular expression.*. For example, the normal rule
for compiling C source files is

%.o: %.c
$CC $CFLAGS -c $stem.c

The variablestem in the recipe is the string matched by the% . TheCC variable is good planning; a differ-
ent compiler can be used very easily. Using this metarule, our mkfile becomes shorter:

3

CC=cc
CFLAGS=-g -p
prog: a.ob.o c.o

$CC $CFLAGS -o prog $prereq
b.o: prog.h
c.o: prog.h
%.o: %.c

$CC $CFLAGS -c $stem.c

Notice that the prerequisites for a target can be spread across many rules.Two rules apply tob.o, the spe-
cific rule withprog.h and the metarule for.o’s. Only one of the rules should have a recipe. If there is more
than one recipe,mk complains that the way to make the target is ambiguous.

The% can appear anywhere in the target or prerequisite, not just at the beginning.

Mk has some predefined variables and rules listed in Appendix 1. Because our rule for%.o and the
value forCC are the same as the predefined rules and variables, we can omit them for a shorter mkfile:

CFLAGS=-g -p
prog: a.ob.o c.o

$CC $CFLAGS -o prog $prereq
b.o: prog.h
c.o: prog.h

Any non-metarule takes precedence over a metarule. Thus, metarules for generating.o’s (say) do not con-
flict with any rule for generating a specific.o.

Rules with no prerequisites

Rules need not actually build their targets. Somerules are simply shell scripts embedded in the
mkfile for convenience. For example, most mkfiles have the targetclean:

clean:
rm -f *.o prog core

Note thatclean is intended as a label, not a file.Unfortunately, if a file namedcleanexists, the recipe will
not be executed, sinceclean is up to date (because no prerequisite has caused it to be out of date).We want
to avoid any such inadvertent interactions with the file system.Mk allows a label to have an attribute of
virtual , which means that it is distinct from a file of the same name.Targets can be marked as virtual by
appending aV: to the colon separator between targets and prerequisites:

clean:V:
rm -f *.o prog core

Other attributes are described below.

Rules with multiple targets

The rules relatingb.o andc.o to prog.h can be combined into one rule with two targets.

CFLAGS=-g -p
prog: a.ob.o c.o

$CC $CFLAGS -o prog $prereq
b.o c.o: prog.h
clean:V:

rm -f *.o prog core

If a rule with multiple targets has no recipe, it is simply a shorthand notation for all the simple rules with
one target. A rule with multiple targets and a recipe has subtle implications described below. To motivate
the subtleties, we digress to describe theyacc parser generator.

4

Yacc takes a file describing a grammar and produces the source for a C routine that will parse input
according to the given grammar. The source is put in the filey.tab.c. Yacc also produces a header file
calledy.tab.h that links the parser to a lexical analyzer. The grammar file also contains semantic action
code. Typically, changes to the grammar file do not change the headery.tab.h, but only the semantic rou-
tines.

Let us add a grammar and a lexical analyzer toprog*:

prog: a.ob.o c.o y.tab.o lex.o
$CC $CFLAGS -o prog $prereq

b.o c.o: prog.h
lex.o: y.tab.h
y.tab.c y.tab.h: gram.y

yacc -d gram.y

The grammar is kept ingram.y (the conventional suffix foryacc input is .y). The-d option toyacc pro-
ducesy.tab.h. Unfortunately, this mkfile does too much work in the normal case. Every time the grammar
file is changed, a newy.tab.h is made and thuslex.owill always be out of date even though the contents of
y.tab.h may not have been changed.The best solution maintains another header file (sayx.tab.h) that only
changes when necessary, that is, when the contents ofy.tab.h actually change. The new mkfile is

prog: a.ob.o c.o y.tab.o lex.o
$CC $CFLAGS -o prog $prereq

b.o c.o: prog.h
lex.o: x.tab.h
x.tab.h: y.tab.h

cmp -s x.tab.h y.tab.h || cp y.tab.h x.tab.h
y.tab.c y.tab.h: gram.y

yacc -d gram.y

The recipe forx.tab.h is a conditional shell construct; if the commandcmp -s x.tab.h y.tab.h returns with
an error (the files are different), then execute the commandcp y.tab.h x.tab.hto copyy.tab.h ontox.tab.h.
In the case wherey.tab.h doesn’t change, the action is straightforward:

$ mk -e
y.tab.c(541051073) < gram.y(541051092)
y.tab.h(541051072) < gram.y(541051092)
yacc -d gram.y
y.tab.o(541051082) < y.tab.c(541051100)
cc -cy.tab.c
x.tab.h(541042236) < y.tab.h(541051099)
cmp -s x.tab.h y.tab.h || cp y.tab.h x.tab.h
cp not done
prog(541051087) < y.tab.o(541051109)
cc -oprog a.o b.o c.o y.tab.o lex.o
$

If we now change the grammar so that the header file does change:

rrrrrrrrrrrrrrrrrr
*Some unimportant detail has been removed from the mkfile.

5

$ mk -e
y.tab.c(541051100) < gram.y(541051148)
y.tab.h(541051099) < gram.y(541051148)
yacc -d gram.y
y.tab.o(541051109) < y.tab.c(541051155)
cc -cy.tab.c
x.tab.h(541042236) < y.tab.h(541051154)
cmp -s x.tab.h y.tab.h || cp y.tab.h x.tab.h
cp done; x.tab.h updated
lex.o(541042267) < x.tab.h(541051165)
cc -clex.c
prog(541051114) < y.tab.o(541051163)
prog(541051114) < lex.o(541051169)
cc -oprog a.o b.o c.o y.tab.o lex.o
$

The subtleties are twofold.The first is that the time stamps for files are only examined when the file is ini-
tially referenced or when it is the target of a rule.If y.tab.h had not been a target for theyacc rule, thenmk
would assume thaty.tab.h had not been updated.The second subtlety is that the rule forx.tab.h need not
changex.tab.h. If it does not, thenlex.oneed not be recompiled.

Aggregates

Some of the things we would like to maintain withmk are actually collections oraggregatesof enti-
ties, such asUNIX object libraries (archives maintained byar). Other(unsupported as yet) examples are
cpio and SCCS files. The type of aggregate is determined by the file’s ‘‘magic number.’’ Each type has
support code withinmk to get the time stamp of a member and to ‘‘touch’’ (see below) a member. The
notationa(m) refers to memberm of aggregatea. For example, consider an archivelib.a made up ofa.o,
b.o, andc.o. The mkfile looks like

lib.a:N: lib.a(a.o) lib.a(b.o) lib.a(c.o)
lib.a(%.o): %.o

ar r lib.a $stem.o

As each new.o file is generated, it is put intolib.a. This is straightforward and correct but inefficient: anar
command is executed for every out of date object file.A better way is to generate all the.o files and then
do thear. The new mkfile relies on a shell script calledmembername:

lib.a: lib.a(a.o) lib.a(b.o) lib.a(c.o)
ar r lib.a ‘membername $newprereq‘

lib.a(%.o):N: %.o

N attribute stopsmk from complaining that there is no recipe to execute in order to build a target. Ingen-
eral, this would be an error but in this case, we update the target in another recipe.Membernametakes
aggregate notation and extracts the member names. For example,

$ membername ’lib.a(a.o)’ ’lib.a(b.o)’ ’lib.a(c.o)’
a.o b.o c.o
$

The quotes are to stop the shell from interpreting the(). We use the variablenewprereq (supplied bymk)
because we only need to replace the object files that have changed.

Parallel processing

Mk executes recipes by continually traversing the dependency graph looking for targets that can be
made. Forexample, in our mkfile:

6

prog: a.ob.o c.o y.tab.o lex.o
$CC $CFLAGS -o prog $prereq

b.o c.o: prog.h
lex.o: x.tab.h
x.tab.h: y.tab.h

cmp -s x.tab.h y.tab.h || cp y.tab.h x.tab.h
y.tab.c y.tab.h: gram.y

yacc -d gram.y

the targeta.o can be made immediately, while the targety.tab.o has to wait fory.tab.c to be made.When
mk finds a recipe it can execute, it puts the recipe on a queue.When the recipe terminates,mk updates the
dependency graph. The number of recipes executing simultaneously is the value of the variableNPROC,
which is initially one. On multi-processor machines,mk goes faster with higher values; most mkfiles on
our 12 processor machine haveNPROC between 6 and 10. In most situations, increasingNPROC beyond
a certain limit gains almost nothing. The other way to speed up parallel builds is to ensure that as many
recipes as possible are executing; that is, order the sub-targets such that the slowest are done first.While
mk gives no guarantees about the order of builds, generally prerequisites are built in left-to-right order as in
the mkfile.

The -u (utilization) option measures how many seconds (real time) are spent with so many recipes
executing. Forexample, buildingprog with three simultaneous recipes yields

0: 1
1: 4
2: 7
3: 10

This means that the entire run took 22 seconds real time; 10 seconds with three recipes running, 7 with two
and 4 with one.The time with zero recipes executing corresponds tomk reading the mkfile and building
the dependency graph.

Parallel execution implies that recipes should not interact unnecessarily. For example, the first ver-
sion of the library mkfile should not be run in parallel as simultaneousar ’s on the same archive interfere*.
The second version can be run in parallel because only onear is done, after all the object files are made.

Missing intermediates

In all the examples we have seen so far, mk has made all the targets ‘‘between’’ the file that changed
and the main target. Thisis not always done. Any non-existent intermediate target (a target other than the
root target with prerequisites) is treated specially. If pretending it existed with the time stamp of its most
recent prerequisite would make all targets that depended on it be up to date, then it is not made. For exam-
ple, in our mkfile:

$ mk -e
mk: ‘prog’ is up to date
remove a.o
$ mk -e
pretending a.o has time 540869454
mk: ‘prog’ is up to date

The intuition is that if we use the mkfile to build the targets, then removing the intermediates causes no
harm. Ofcourse, if we actually need the missing intermediates,mk builds them.

rrrrrrrrrrrrrrrrrr
*Arguably, mk might protect against simultaneous updates of an aggregate but that is currently infeasible because it im-
plies understanding what the recipe does.

7

change b.c
$ mk -e
pretending a.o has time 540869454
b.o(540869546) < b.c(541350226)
cc -cb.c
unpretending a.o because of prog because of b.o
a.o(0) < a.c(540869454)
cc -ca.c
prog(541104056) < a.o(541350255)
prog(541104056) < b.o(541350244)
cc -oprog a.o b.o c.o y.tab.o lex.o
$

The action is not too hard to follow: firstmk sees thata.o is missing and pretends it is there.Thenmk
noticesb.o is out of date and needs to be rebuilt.Whenb.o is finally built, it causesprog to become out of
date and thereforemk no longer can pretend thata.o is up to date. It then buildsa.oand thenprog.

The major advantage of missing intermediates is avoiding multiple copies of files. For example, in
our mkfile to maintain a library, we keep two copies of every object file.By using the notion of missing
intermediates, we can keep one copy — the copy we need in the archive.To do so, simply remove the
object files after they have been archived:

lib.a: lib.a(a.o) lib.a(b.o) lib.a(c.o)
names=‘membername $newprereq‘
ar r lib.a $names && rm $names

lib.a(%.o): %.o

We store the object files’ names in the variablenamesto avoid executingmembernametwice. The&& is
another conditional shell construct; we remove the files only if the archive command succeeds.

The special treatment of missing intermediates is suppressed by the-i option ofmk.

Administrative

Mk provides an easy way to bring a target up to date without actually doing any work. For example,
if we changeprog.h in such a way thatb.o or c.owon’t change (such as adding a comment), we don’t want
to recompile the files. Instead, we can askmk to modify the files’ time stamps.

add something to prog.h
$ mk -t
touch(b.o)
touch(c.o)
touch(prog)
$

Mk lists the files it modified.This is a dangerous feature; use it carefully and sparingly. Virtual targets are
not affected becausetouching only changes files.

Mk can also tell us what it would do without actually doing it. The option-n causes recipes to be
printed rather than executed. There are two main problems.Mk assumes that every recipe will update all
its targets. Normallythis is true, but for our mkfile,mk -n would erroneously indicate thatlex.o will
always be remade. Thus, unnecessary work may be indicated. The second problem is thatmk expands rec-
ognizable references to shell variables. It does this without parsing the shell script and can make mistakes
with constructs likefor loops. Forexample, with the mkfile (theQ attribute suppresses the normal recipe
echo)

8

i=a b c
all:Q:

for i in x y z
do

echo $i
done

the difference betweenmk andmk -n is:

$ mk -n
for i in x y z
do

echo a b c
done
$ mk
x
y
z
$

This latter problem applies to the normal recipe echo as well.

Sometimes we would like to know whatmk would do if some files were changed.The -wfiles,...
option supports this ‘‘what if’’ query by setting the time stamps internally for the named files to the current
time. With our mkfile forprog, we can ask what would happen if we changedprog.h:

$ mk -n -wprog.h
cc -cb.c
cc -cc.c
cc -oprog a.o b.o c.o y.tab.o lex.o
$

The advantage of-w is that neither the files nor their time stamps are changed. Of course,-w can be used
without using-n. For example, to forcemk to remakeb.o we can say

$ mk -wb.c b.o
cc -cb.c
$

Quoting

The quoting rules for assignment lines and rule header lines are intended to be the same as forsh(1)
(the Bourne shell).As these rules are nowhere described clearly, we describemk’s quoting rules below.
The termquoting a charactermeans making that character stand for itself, rather than any special, or meta,
meaning. Forexample,$a stands for the value of the variablea, whereas\$a (the$ is now quoted) stands
for the two characters$ anda.

Input is parsed until a newline without a preceding\ is seen. If during parsing a backquote‘ is seen,
input is collected until another backquote is seen.During this collection,\ quotes every character except\n
which is deleted.The collected input is given as standard input to the shell and the standard output replaces
the collected input and the two backquotes. After all the backquotes are processed, the resulting text is
scanned for single quotes, double quotes and variable expansions.Text between single quotes is quoted.
Text between double quotes is quoted after variable expansion is done and\ only quotes the characters"’$\ .

The text is then broken into parts separated by unquoted white space and any part containing[*? as
unquoted characters is then expanded as filenames as persh(1).

9

Mor e on metarules

There are actually two kinds of metarules; we have looked only at the kind that uses% to match
arbitrary strings. The second kind uses full regular expressions as supported inegrep(1). Theexpression
may include sub-expressions enclosed in\(\); the values of the sub-expressions can be used in the prerequi-
sites and the recipe. For example, consider the problem of making object files in sub-directories. That is,
we wish to makedir/a.o from dir/a.c. The C compiler only generates object files in the current directory,
so we need to break the target into two parts:

’(.*)/([ˆ/]*)\.o’:R: ’\1/\2.c’
cd $stem1; $CC $CFLAGS -c $stem2.c

The R attribute for the rule means interpret the target(s) as regular expression(s). The different ways of
referring to the sub-expressions ($stem1inside the recipe and\1 on the rule header line) are regrettably a
consequence of not processing the recipe.A warning: regular expression metarules are significantly slower
than% metarules.

Regardless of which kind of metarule you use, certain metarules can lead to infinite dependency
graphs. Forexample, the metarule

%: %.z
unpack $stem.z

gives this dependency graph

x x.z x.z.z x.z.z.z ...

The problem arises any time a metarule has a prerequisite that can be a target of the same rule.Mk handles
this problem by restricting the number of times a metarule is used in generating prerequisites to the value of
the variableNREP. This value is normally one; if set to 3, the dependency graph forx in our example is

x x.z x.z.z x.z.z.z

Thus, settingNREP to greater than one is necessary if we have files that have been packed repeatedly.

3. GettingFancy

namelists from a sibngle list

diatribe against nmake: cflags as a file.

(where do i talka bout environ var precedence?)

general P stuff; rewrite yacc rule

4. Differences betweenmake and mk

The qualitative differences betweenmk andmakecan be summarized as

• Make builds targets when it needs them, allowing systematic use of side effects. Mk constructs the
entire dependency graph before building any target.

• Make supports suffix rules and% metarules.Mk supports% and regular expression metarules.

• Mk performs transitive closure on metarules,makedoes not.

• Make supports cyclic dependencies,mk does not.

• Make’s recipes are collections of one-line shell commands, executed a line at a time.Variable values
are passed by editing the recipe text before passing it through to the shell.Mk ’s are simply shell
scripts executed as one unit.Variable values are passed through environment variables.

• Make supports parallel execution of single line recipes when building the prerequisites for specified
targets.Mk supports parallel execution of all recipes.

• Make uses special targets (beginning with a.) to indicate special processing.Mk uses attributes indi-
cated by qualifiers after the: separator in a rule definition.

10

• Mk allows the standard output of a recipe to be read as an additional mkfile whilemk is running.
This allows a mkfile to configure itself at run time.

• Mk supportsvirtual targets which exist only within an execution ofmk and are independent of the
underlying file system.

• Mk supports a general mechanism for deciding whether a file is out of date as well as the normal
method of comparing file modification times.

In most situations, mkfiles and makefiles (the input formake) will have only minor syntactic differ-
ences. Inpractice, mkfiles often are significantly bigger because of embedded shell scripts or to make the
most of underlying parallel hardware.

The most striking difference betweenmk andmake is in speed of execution. There are three main
factors involved.Make uses a linear list to access variables and rules;mk uses a hash table.Mk andmake
use time stamps in slightly different ways;makeoften has to measure a file’s time stamp unnecessarily. If
there are metarules,mk will typically create a much larger dependency graph thanmake. The graph gets
pruned but at the cost of testing (for existence) a large number of files.In the examples given below, exe-
cution times are given (in seconds) as a sum of user time (a measure of how efficiently the dependency
graph is built and executed) and system time (a measure of how many time stamps are measured).The
times do not include times for recipe executions.

For mkfiles with no metarules,mk is always faster thanmakebecause of better accessing algorithms.
For example, the mkfile to compile the operating system describes 83 object files.Make takes 19.8u+3.6s,
mk takes 6.6u+3.6s.Mk is faster by a factor of 3 (user time) and 2.3 (user+sys).

For more normal mkfiles (that use the builtin metarules),make is somewhat faster thanmk until
about a dozen prerequisites are involved.Mk is much better for larger mkfiles. In most cases,mk’s perfor-
mance can be improved by only using necessary metarules.For example, for a program made from 61
object files all compiled from.c files, we give the times for a normal mkfile and a mkfile that has only one
metarule (generating%.o from %.c).

Relative Speed Relative Speed
(user) (user+sys)

Command RunTime

make 12.0u+9.7s 1 1
mk (all metarules) 5.1u+4.0s 2.3 2.4
mk (one metarule) 3.9u+2.9s 3 3.2

Mk handles aggregates efficiently. The main C library has 242 members.Make takes 47.7u+10.9s,
mk takes 6.3u+12.5s.Mk is faster by a factor of 7.6 (user time) and 3.1 (user+sys).

The final example comes from Ted Kowalski at AT&T Bell Laboratories. The mkfile is about 20,000
characters and describes an experimental workstation environment built from 238.c files, 59.h files, 7 .y
files and 7.l files. The mkfile makes heavy use of variables.Make takes 278.8u+16.2s,mk takes
8.4u+10.5s.Mk is faster by a factor of 33 (user time) and 15.6 (user+sys).

Despite the marked speed advantage ofmk overmake, the main reason users in our computing com-
munity usemk is its functionality, in particular, transitive closure on metarules, parallel execution of
recipes, and the regular expression metarules.

Conversion from make to mk

Conversion of makefiles into mkfiles comes in two parts.The first is a mechanical process of syntax
conversion (such as changing variable references) handled by thesed(1) script mkconv. It produces a
mkfile on its standard output. For most makefiles, this is all that needs to be done.

The second kind of changes that need to be made have to be done by hand.They involve the use of
side-effects bymake, such as the normal wayyacc grammars are handled.The proper way to handle these
grammars is described above; in other cases, the general rule is to tell the truth about dependencies and let
the dynamic time measuring prevent unnecessary work.Mk has much support for the debugging for these
cases, particularly where the makefile is complex or subtle.The most useful options are-dg (to find out the
exact dependency graph),-e (to explain whymk thinks something is out of date), and-n and-w (to conduct

11

what if? experiments).

Availability of mk

There are three sources formk depending on who wants it.AT&T Bell Laboratories employees can
get it from TOAD. Commercial UNIX licensees can obtainmk from the AT&T Toolchest
(1-800-828-UNIX to talk to a person; 1-201-522-6900, loginguest, to browse and talk to a computer).
Educational (and Administrative)UNIX licensees can get an electronic or magnetic tape distribution from

Judith L. Macor
Computing Information Service
AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

5. ThePrinciples

Mk ’s semantics and syntax were designed according to a few general principles or guidelines.

Use existing syntax and notions. The syntax of mkfiles is almost exactly the same as a makefile
(used bymake). (Theonly syntactic change for rules is the attribute marking.)Mk ’s variables are exactly
the same as shell variables.Recipes are written insh(1), not a special purpose language. The regular
expression syntax and semantics were adopted from existing tools (such asegrep anded), trading some
awkwardness for familiarity.

Generalize features. Make’s metarules (already a generalization of the earlymakesuffix rules) were
extended to full regular expressions.Mk performs the transitive closure on the target-prerequisite relations
defined by all rules, including metarules.The primitive form of parallel processing supported bymakehas
been generalized to allow parallel execution of any recipe.By constructing the entire dependency graph
before executing any recipes,mk maximizes the benefits from parallel processing.

Removing special cases. Make’s variables and recipes were so close to being shell variables and
scripts that the differences were removed inmk. Making recipes shell scripts had the further advantage that
mk does not have to parse or process the recipes. The use of special target and prerequisite names
(beginning with a dot) to indicate special actions has been dropped in favor of a more explicit notion of tar-
getattributes.

Mk is a general purpose tool. Recent versions ofmake (such asnmake) focus on the issues con-
nected with building software and generally contain much builtin knowledge about C programming.Mk ,
on the other hand, is a tool for maintaining file dependencies, whether they be programs or circuit board
descriptions. Itoffers general purpose and powerful mechanism for all users, not just help for program-
mers.

12

6. Appendix

The following variable definitions are made before processing the environment or any mkfiles.

AS=as
CC=cc
CFLAGS=
FC=f77
FFLAGS=
LDFLAGS=
LEX=lex
LFLAGS=
NPROC=1
NREP=1
YACC=yacc
YFLAGS=

The builtin rules are

%.o: %.c
$CC $CFLAGS -c $stem.c

%.o: %.s
$AS -o $stem.o $stem.s

%.o: %.f
$FC $FFLAGS -c $stem.c

%.o: %.y
$YACC $YFLAGS -o $stem.c $stem.y &&
$CC $CFLAGS -c $stem.c && rm $stem.c

%.o: %.l
$LEX $LFLAGS -t $stem.l > $stem.c &&
$CC $CFLAGS -c $stem.c && rm $stem.c

The environment for the recipe’s shell is augmented by these variables:

alltarget all the targets for this rule.

newprereq the prerequisites that are more recent than the target.

nproc this is the process slot for this recipe. It is a number between zero and$NPROC-1 inclu-
sive. It is useful for parallel execution on a single CPU machine on a network.

pid the process id for themk invoking this script. This is useful for communicating with
other rules.

prereq all the prerequisites for this target. Thismay include prerequisites from several rules.

stem,... the value of% in a metarule. It is null for a non-metarule.The value of then th subex-
pression in a regular expression metarule is put in the variablestemn, for n<10. It is null
otherwise.

target the targets being built for this rule.

13

