Mk: a successor tamake

Andrew Hume

ABSTRACT

Mk is an eficient general tool for describing and maintaining dependencies
between files or program#/k is styled on, and largely compatible with, teiX T tool
make. The major advantages afk over make are executing recipes in parallel, using
pattern-matching metarules rather than suffix transformation rules, and deriving depen-
dencies by transitive closure on all rulddk runs anywhere from 2 to 30 times faster
thanmake

This report describesik by means of an evolving example. Other sections sum-
marize the differences betwerk andmake and discuss the principles underlyimd’s
design.

1. Introduction

A lamge fraction of computer activity consists of repeated application of tools (special or general pur
pose programs) to input files to produce output files. The most obvious example is programming, but other
no less important examples range from simple document-processing pipelines to the generation of a circuit
board or integrated circuit involving hundreds of files. Common to all these activities are file dependen-
cies, where changing a file requires that other files be renidkleeads a dependency description (called a
mkfile) and does the minimal work necessary to bring a target file up to date.

Mk owes much tanake, written by Stu Feldman, which has been doing a similar jobNiX sys-
tems since 1976. The versionrobkereferred to throughout this report is Feldnsam’'search version dis-
tributed with ResearcbNIX, Eighth Edition and is substantially more advanced than the versions found
found in System V or BerkelgyNIX systems.

The next section is rather londt follows the gradual development of a somewhat complicated
mkfile describing how to build a C program. It is followed by a section on fancy usels. othe fourth
section summarizes the differences betwedrnand make and includes a comparison of execution times.
The fifth section highlights the principles underlyimk. The appendix documents the predefined or
builtin variables and rules faonk.

2. An Extended Example

This section describask in the context of building C programdhis is for the readé&r comfort;
mk knows nothing special about C progranihe example starts fofmall and simple and is extended
throughout the sectionSometimesmk’s behavior is best demonstrated by excerpts from a terminal ses-
sion. Thesavill be shown as

$ date
Fri Feb 20 20:06:03 EST 1987
$

where$ is the prompt for the next command. Comments will be showtalios.

T UNIX is a trademark of Bell Laboratories.

Initially, our program is callegrog and is made froma.o andb.o, which are made by compilirgc
andb.c respectively In addition, b.c includes a header filgrog.h. We represent these relationships picto-
rially below

prog

a.o b.o
a.c prog.h b.c
The arrow means “depends dnT’hus, prog depends ora.o andb.o and if a.o or b.o is modified, then

prog needs to be rebuilt. Similarlg.0depends oa.candb.o depends oib.c andprog.h.
The textual description of hoprog is built is kept in ankfile and looks like

prog: a.ob.o
cc-oproga.ob.o

a.o: a.c
cc-ca.c

b.o: b.cprog.h
cc-ch.c

The mkfile is a sequence nfles. Each rule defines a target (Sarpg) that depends on some prerequisites
(a.oandb.o) and the commands (a shell script called rEpe) to bring the target up to dateMk takes

this description from a file nameukfile and builds the given tgets. Ifno targets are given on the com-
mand line, the first tget in the mkfile is built. For example, if we start with just the source files in our
directory,mk creategprog by compilinga.candb.c.

$ mk

cc-ca.c
cc-ch.c

cc -0 prog a.0 b.o
$

Executingmk again does nothing, @o0g is now up to date.

$ mk
mk: ‘prog’ is up to date
$

If we change a source filmk rebuilds only the files that are out of date:

modify a.c

$ mk

cc-ca.c

cc -0 prog a.0 b.o
$

Mk will explain why it is rebuilding a file if we use theoption. Forexample,

modify prog.h

$mk -e

b.0(540869437) < prog.h(540869535)
cc-ch.c

prog(540869493) < b.0(540869546)
cc -0 prog a.0 b.o

$

Thus,b.o was out of date with respect poog.h. After b.o was remadeprog was found to be out of date
with respect td.o and was then rebuilt. The numbers are the actual time stamps of the files: the values are
not as important as the difference between thartime stamp of zero indicates a non-existent file.

Variables
Suppose we now need to compile the source files withgtflag so that we can use the debugger
We @an of course simply edit each rule to chaogmto cc -g

prog: a.ob.o
cc -g -0 prog a.0 b.o

a.o: a.c
cc-g-cac

b.o: b.cprog.h
cc-g-ch.c

A better solution is to usewariable. A mk variable has a similar form and use to a shell variafleuit-
able (mnemonic) name GFLAGS. The new mkfile looks like this:

CFLAGS=-g
prog: a.ob.o

cc $CFLAGS -0 prog a.0 b.o
a.o: a.c

cc $CFLAGS c a.c
b.o: b.cprog.h

cc $CFLAGS c b.c

Now, if we want to profileprog (which means compiling everything with the option), we need only
change the first line to

CFLAGS=-g -p

and recompile all the object files. The easiest way to recompile everything imlwith which says to
always make every target regardless of time stamps.

Some variables are supplied imk for use by the recipe. One gereq whose value is all the pre-
requisites for this ruleWe an rewrite the first rule like this:

prog: a.ob.o
cc $CFLAGS -o prog $prereq

This guarantees that the lists of object files (the prerequisite line and the cc line) are thé samay
easy to incorporate a new object file by adding the new name just once:

CFLAGS=-g -p
prog: a.ob.oc.o
cc $CFLAGS -o prog $prereq
a.o: a.c
cc $CFLAGS c a.c
b.o: b.cprog.h
cc $CFLAGS c b.c
c.o: c.cprog.h
cc $CFLAGS c c.c

Metarules

The preceding rules for the files are very similarMk supportsmetarules that is, rules that apply
to a class of targets, rather than just one specifiettaiTheclass of targets is defined by pattern matching,
with the symboRb (called the stem) equivalent to the regular expressiofror example, the normal rule
for compiling C source files is

%.0: %.c
$CC $CFLAGS -c $stem.c

The variablestemin the recipe is the string matched by #he The CC variable is good planning; a téf-
ent compiler can be used very easllsing this metarule, our mkfile becomes shorter:

CC=cc
CFLAGS=-g -p
prog: a.ob.oc.o
$CC $CFLAGS -0 prog $prereq

b.o: prog.h
c.o: prog.h
%.0: %.c

$CC $CFLAGS -c $stem.c

Notice that the prerequisites for a target can be spread across manylwodesiles apply td.o, the spe-
cific rule withprog.h and the metarule foo's. Only one of the rules should have a recipe. If there is more
than one recipenk complains that the way to make the target is ambiguous.

The% can appear anywhere in the target or prerequisite, not just at the beginning.

Mk has some predefined variables and rules listed in Appendix 1. Because our %le &ond the
value forCC are the same as the predefined rules and variables, we can omit them for a shorter mkfile:

CFLAGS=-g -p
prog: a.ob.oc.o
$CC $CFLAGS -0 prog $prereq
b.o: prog.h
c.o: prog.h

Any non-metarule takes precedence over a metarule. Thus, metarules for gengsafag) do not con-
flict with any rule for generating a specific

Rules with no prerequisites

Rules need not actually build their dats. Someules are simply shell scripts embedded in the
mkfile for convenience. For example, most mkfiles have the telepat

clean:
rm -f *.0 prog core

Note thatcleanis intended as a label, not a filenfortunately if a file namedclean exists, the recipe will
not be executed, sinoteanis up to date (because no prerequisite has caused it to be out olWdateqnt

to avoid any such inadvertent interactions with the file systei.allows a label to have an attribute of
virtual , which means that it is distinct from a file of the same nalaegets can be marked as virtual by
appending &: to the colon separator between targets and prerequisites:

clean:V:
rm -f *.0 prog core

Other attributes are described below.

Rules with multiple targets
The rules relatingp.o andc.oto prog.h can be combined into one rule with two targets.

CFLAGS=-g -p
prog: a.ob.oc.o
$CC $CFLAGS -0 prog $prereq
b.o c.o: prog.h
clean:V:
rm -f *.0 prog core

If a rule with multiple targets has no recipe, it is simply a shorthand notation for all the simple rules with
one taget. Arule with multiple targets and a recipe has subtle implications described BEdawotivate
the subtleties, we digress to describeythec parser generator.

Yacc takes a file describing a grammar and produces the source for a C routine that will parse input
according to the given grammarhe source is put in the fiketab.c. Yacc also produces a header file
calledy.tab.h that links the parser to a lexical analyz&he grammar file also contains semantic action
code. TWpically, changes to the grammar file do not change the headeérh, but only the semantic rou-
tines.

Let us add a grammar and a lexical analyz@rog*:

prog: a.ob.oc.oy.tab.olex.o
$CC $CFLAGS -0 prog $prereq
b.o c.o: prog.h
lex.o: ytab.h
y.tab.c y.tab.h: gram.y
yacc -d gram.y

The grammar is kept igram.y (the conventional suffix foyacc input is.y). The-d option toyacc pro-
ducesy.tab.h. Unfortunately this mkfile does too much work in the normal case. Every time the grammar
file is changed, a newtab.h is made and thugx.owill always be out of date even though the contents of
y.tab.h may not have been changethe best solution maintains another header file Xdap.h) that only
changes when necessahat is, when the contents yfab.h actually change. The new mkfile is

prog: a.ob.oc.oy.tab.olex.o
$CC $CFLAGS -0 prog $prereq
b.o c.o: prog.h
lex.o: x.tab.h
x.tab.h: y.tab.h
cmp -s x.tab.h y.tab.h || cp y.tab.h x.tab.h
y.tab.c y.tab.h: gram.y
yacc -d gram.y

The recipe fox.tab.h is a conditional shell construct; if the commamdp -s x.tab.h ytab.h returns with
an error (the files are different), then execute the commjauydab.h x.tab.hto copyy.tab.h ontox.tab.h.
In the case whengtab.h doesnt change, the action is straightforward:

$mk -e

y.tab.c(541051073) < gram.y(541051092)
y.tab.h(541051072) < gram.y(541051092)
yacc -d gram.y

y.tab.0(541051082) < y.tab.c(541051100)
cc -cy.tab.c

x.tab.h(541042236) < y.tab.h(541051099)
cmp -s x.tab.h y.tab.h || cp y.tab.h x.tab.h
cp not done

prog(541051087) < y.tab.0(541051109)
cc -oprog a.o b.o c.o y.tab.o lex.o

$

If we now change the grammar so that the header file does change:

*Some unimportant detail has been removed from the mkfile.

$mk -e

y.tab.c(541051100) < gram.y(541051148)
y.tab.h(541051099) < gram.y(541051148)
yacc -d gram.y

y.tab.0(541051109) < y.tab.c(541051155)
cc -cy.tab.c

x.tab.h(541042236) < y.tab.h(541051154)
cmp -s x.tab.h y.tab.h || cp y.tab.h x.tab.h
cp done; x.tab.h updated
lex.0(541042267) < x.tab.h(541051165)
cc -clex.c

prog(54105114) < y.tab.0(541051163)
prog(54105114) < lex.0(541051169)

cc -oprog a.o b.o c.o y.tab.o lex.o

$

The subtleties are twofoldThe first is that the time stamps for files are only examined when the file is ini-
tially referenced or when it is the ¢gt of a rule.If y.tab.h had not been a target for thacc rule, thenmk
would assume thattab.h had not been updatedhe second subtlety is that the rule faab.h need not
changex.tab.h. If it does not, thetex.oneed not be recompiled.

Aggregates

Some of the things we would like to maintain witlk are actually collections @ggregatesof enti-
ties, such as&INIX object libraries (archives maintained ar). Other(unsupported as yet) examples are
cpio and SCCS files. The type of aggregate is determined by the“fikglgic numbet’ Each type has
support code withinmk to get the time stamp of a member and'tmuth” (see below) a membeiThe
notationa(m) refers to membem of aggregat@. For example, consider an archiMe.a made up oh.o,
b.o, andc.o. The mkfile looks like

lib.a:N: lib.a(a.o) lib.a(b.0) lib.a(c.0)
lib.a(%.0): %.0
arr lib.a $stem.o

As each newofile is generated, it is put intib.a. This is straightforward and correct but inefficient:aan
command is executed for every out of date object Mdaetter way is to generate all thefiles and then
do thear. The new mkfile relies on a shell script calledmbername

lib.a: lib.a(a.o) lib.a(b.o) lib.a(c.0)
ar r lib.a ‘membername $newprereq’
lib.a(%.0):N: %.0

N attribute stopsnk from complaining that there is no recipe to execute in order to buildiet.tangen-
eral, this would be an error but in this case, we update thet tar another recipeMembernametakes
aggregate notation and extracts the member names. For example,

$ membername ’lib.a(a.o)’ 'lib.a(b.0)’ 'lib.a(c.0)’
a.ob.oc.o

$

The quotes are to stop the shell from interpretingth&Ve use the variableewprereq (supplied bymk)
because we only need to replace the object files that have changed.

Parallel processing

Mk executes recipes by continually traversing the dependency graph lookingyéis tidnat can be
made. Foexample, in our mkfile:

prog: a.ob.oc.oy.tab.olex.o
$CC $CFLAGS -0 prog $prereq
b.o c.o: prog.h
lex.o: x.tab.h
x.tab.h: y.tab.h
cmp -s x.tab.h y.tab.h || cp y.tab.h x.tab.h
y.tab.c y.tab.h: gram.y
yacc -d gram.y

the tageta.o can be made immediatelyhile the tagety.tab.o has to wait fory.tab.c to be made When

mk finds a recipe it can execute, it puts the recipe on a giwhen the recipe terminateask updates the
dependency graph. The number of recipes executing simultaneously is the value of the NRRD(E

which is initially one. On multi-processor machinesk goes faster with higher values; most mkfiles on

our 12 processor machine haNBROC between 6 and 10. In most situations, increasiRROC beyond

a certain limit gains almost nothing. The other way to speed up parallel builds is to ensure that as many
recipes as possible are executing; that is, order the gdigasuch that the slowest are done fivghile

mk gives no guarantees about the order of builds, generally prerequisites are built in left-to-right order as in
the mkfile.

The -u (utilization) option measures how many seconds (real time) are spent with so many recipes
executing. Foexample, buildingprog with three simultaneous recipes yields

0:1
1: 4
2:7
3:10

This means that the entire run took 22 seconds real time; 10 seconds with three recipes running, 7 with two
and 4 with one.The time with zero recipes executing correspondskaeading the mkfile and building
the dependency graph.

Parallel execution implies that recipes should not interact unnecessamilgxample, the first ver
sion of the library mkfile should not be run in parallel as simultanaoason the same archive interfere*.
The second version can be run in parallel because onlgrosedone, after all the object files are made.

Missing intermediates

In all the examples we have seen sorfdc has made all the targetbétween’ the file that changed
and the main tget. Thisis not always done. Any non-existent intermediate target (a target other than the
root target with prerequisites) is treated specialfypretending it existed with the time stamp of its most
recent prerequisite would make allgats that depended on it be up to date, then it is not made. For exam-
ple, in our mkfile:

$mk -e

mk: ‘prog’ is up to date

remove a.o

$mk -e

pretending a.o has time 540869454
mk: ‘prog’ is up to date

The intuition is that if we use the mkfile to build the targets, then removing the intermediates causes no
harm. Ofcourse, if we actually need the missing intermediaéshuilds them.

*Arguably, mk might protect against simultaneous updates of an aggregate but that is currently infeasible because it im-
plies understanding what the recipe does.

change b.c

$mk -e

pretending a.o has time 540869454
b.0(540869546) < b.c(541350226)
cc -ch.c

unpretending a.o because of prog because of b.o
a.0(0) < a.c(540869454)

cc -ca.c

prog(541104056) < a.0(541350255)
prog(541104056) < b.0(541350244)
cc -oprog a.o b.o c.o y.tab.o lex.o

$

The action is not too hard to follow: firaik sees that.o is missing and pretends it is ther€henmk
noticesb.ois out of date and needs to be rebliithenb.o is finally built, it causeprog to become out of
date and therefonmk no longer can pretend thais up to date. It then buildsoand thermprog.

The major advantage of missing intermediates is avoiding multiple copies of files. For example, in
our mkfile to maintain a librarywe keep two copies of every object fil&y using the notion of missing
intermediates, we can keep one copy — the copy we need in the arthive. 0, simply remove the
object files after they have been archived:

lib.a: lib.a(a.o) lib.a(b.o) lib.a(c.0)
names=‘membername $newprereq'
ar r lib.a $names && rm $names
lib.a(%.0): %.0

We dore the object files’ names in the variablmesto avoid executingnembernaméwice. The&& is
another conditional shell construct; we remove the files only if the archive command succeeds.

The special treatment of missing intermediates is suppressed -bytien ofmk.

Administrative

Mk provides an easy way to bring a target up to date without actually doing any work. For example,
if we changeprog.h in such a way thai.o or c.owon't change (such as adding a comment), we tdeaht
to recompile the files. Instead, we can agkto modify the files’ time stamps.

add something to prog.h
$ mk -t

touch(b.o)

touch(c.0)

touch(prog)

$

Mk lists the files it modified.This is a dangerous feature; use it carefully and sparingijual targets are
not affected becaugeuching only changes files.

Mk can also tell us what it would do without actually doing it. The opfiobnauses recipes to be
printed rather than executed. There are two main problétsassumes that every recipe will update all
its taigets. Normallythis is true, but for our mkfilejnk -n would erroneously indicate thétx.o will
always be remade. Thus, unnecessary work may be indicated. The second problemkigxpainds rec-
ognizable references to shell variables. It does this without parsing the shell script and can make mistakes
with constructs likdor loops. Forexample, with the mkfile (th@ attribute suppresses the normal recipe
echo)

i=abc

all:Q:
foriinxyz
do
echo $i
done

the difference betweamk andmk -n is:

$mk -n
foriinxyz
do
echoabc
done
$ mk
X
y
z

$

This latter problem applies to the normal recipe echo as well.

Sometimes we would like to know whatk would do if some files were changethe -wfiles,...
option supports this “what ifquery by setting the time stamps internally for the named files to the current
time. With our mkfile forprog, we @an ask what would happen if we changeal.h:

$ mk -n -wprog.h

cc -ch.c

cC -cc.c

cc -oprog a.o b.o c.o y.tab.o lex.o
$

The advantage cfv is that neither the files nor their time stamps are changed. Of cewrsan be used
without using-n. For example, to forcenk to remakeb.o we can say

$ mk -wb.c b.o
cc -cb.c
$

Quoting

The quoting rules for assignment lines and rule header lines are intended to be the sastgHs for
(the Bourne shell).As these rules are nowhere described clearyy describemk’s quoting rules below
The termquoting a charactemeans making that character stand for itself, rather than any special, or meta,
meaning. Foexample $a stands for the value of the varialalewhereas$a (the $ is now quoted) stands
for the two charactei$anda.

Input is parsed until a newline without a precediigseen. If during parsing a backquois seen,
input is collected until another backquote is se@aring this collection) quotes every character excépt
which is deleted.The collected input is given as standard input to the shell and the standard output replaces
the collected input and the two backquotes. After all the backquotes are processed, the resulting text is
scanned for single quotes, double quotes and variable expan¥extdetween single quotes is quoted.
Text between double quotes is quoted after variable expansion is doherdndjuotes the character$\ .

The text is then broken into parts separated by unquoted white space and any part cfritagsng
unquoted characters is then expanded as filenames st per

Mor e on metarules

There are actually two kinds of metarules; we have looked only at the kind th&tusematch
arbitrary strings. The second kind uses full regular expressions as suppatpdpil). Theexpression
may include sub-expressions enclosel{\lp the values of the sub-expressions can be used in the prerequi-
sites and the recipe. For example, consider the problem of making object files in sub-directories. That is,
we wish to makelir/a.o from dir/a.c. The C compiler only generates object files in the current directory
so we need to break the target into two parts:

(AI([NN0:R: \1N2.c’
cd $steml; $CC $CFLAGS -c $stem2.c

The R attribute for the rule means interpret the target(s) as regular expression(s). The different ways of
referring to the sub-expressiors{em1linside the recipe and on the rule header line) are regrettably a
consequence of not processing the recpevarning: regular expression metarules are significantly slower
than% metarules.

Regardless of which kind of metarule you use, certain metarules can lead to infinite dependency
graphs. Foexample, the metarule

%: %.z
unpack $stem.z

gives this dependency graph
X — X.Z —» X2z —» XZ22ZI -

The problem arises any time a metarule has a prerequisite that can be a target of the shMkehardles
this problem by restricting the number of times a metarule is used in generating prerequisites to the value of
the variableNREP. This value is normally one; if set to 3, the dependency graphifoour example is

X — X.zZ — X.z.Z — X.Z2.Z2.Z

Thus, settindNREP to greater than one is necessary if we have files that have been packed repeatedly.

3. Getting Fancy
namelists from a sibngle list
diatribe against nmake: cflags as a file.
(where do i talka bout environ var precedence?)
general P stuff; rewrite yacc rule

4. Differences betweemake and mk
The qualitative differences betwestk andmake can be summarized as

. Make builds targets when it needs them, allowing systematic use of $éseMk constructs the
entire dependency graph before building any target.

. Make supports suffix rules arfib metarules.Mk support$% and regular expression metarules.

. Mk performs transitive closure on metaruleske does not.

. Make supports cyclic dependenciesk does not.

. Make’s recipes are collections of one-line shell commands, executed a line at d/inable values

are passed by editing the recipe text before passing it through to theMhk&lare simply shell
scripts executed as one unifariable values are passed through environment variables.

. Make supports parallel execution of single line recipes when building the prerequisites for specified
targets. Mk supports parallel execution of all recipes.

. Make uses special tgets (beginning with g to indicate special processiniylk uses attributes indi-
cated by qualifiers after theseparator in a rule definition.

10

. Mk allows the standard output of a recipe to be read as an additional mkfilemihiterunning.
This allows a mkfile to configure itself at run time.

. Mk supportsvirtual targets which exist only within an executionrok and are independent of the
underlying file system.

. Mk supports a general mechanism for deciding whether a file is out of date as well as the normal
method of comparing file modification times.

In most situations, mkfiles and makefiles (the inputnfiake) will have only minor syntactic dér-
ences. Impractice, mkfiles often are significantly bigger because of embedded shell scripts or to make the
most of underlying parallel hardware.

The most striking difference betweark andmakeis in speed of execution. There are three main
factors involved.Make uses a linear list to access variables and rolksjses a hash tablédk andmake
use time stamps in slightly different waysake often has to measure a fidime stamp unnecessarilyf
there are metarulemk will typically create a much larger dependency graph thake The graph gets
pruned but at the cost of testing (for existence) a large number oflfiléise examples given belpexe-
cution times are given (in seconds) as a sum of user time (a measure ofibientlgfthe dependency
graph is built and executed) and system time (a measure of how many time stamps are mddwsured).
times do not include times for recipe executions.

For mkfiles with no metarulemk is always faster thamake because of better accessing algorithms.
For example, the mkfile to compile the operating system describes 83 objedfillestakes 19.8u+3.6s,
mk takes 6.6u+3.6sMk is faster by a factor of 3 (user time) and 2.3 (user+sys).

For more normal mkfiles (that use the builtin metarulesjke is somewhat faster thamk until
about a dozen prerequisites are involvietk is much better for lger mkfiles. In most casesik’s perfor-
mance can be improved by only using necessary metarbt@sexample, for a program made from 61
object files all compiled front files, we give the times for a normal mkfile and a mkfile that has only one
metarule (generating.o from %.c).

Command Ruime Relative Speed Relative Speed
(user) (user+sys)
make 12.0u+9.75 1 1
mk (all metarules)| 5.1u+4.0s 2.3 2.4
mk (one metarule) 3.9u+2.9s 3 3.2

Mk handles aggregatedfiefently. The main C library has 242 membefdake takes 47.7u+10.9s,
mk takes 6.3u+12.53MKk is faster by a factor of 7.6 (user time) and 3.1 (user+sys).

The final example comes from Ted Kowalski at AT&T Bell Laboratories. The mkfile is about 20,000
characters and describes an experimental workstation environment built from 88 59.h files, 7.y
files and 7.l files. Themkfile makes heavy use of variableMake takes 278.8u+16.23nk takes
8.4u+10.5s.Mk is faster by a factor of 33 (user time) and 15.6 (user+sys).

Despite the marked speed advantagekfver make the main reason users in our computing com-
munity usemk is its functionality in particulag transitive closure on metarules, parallel execution of
recipes, and the regular expression metarules.

Conversion from make to mk

Conversion of makefiles into mkfiles comes in two paftse first is a mechanical process of syntax
conversion (such as changing variable references) handled Bed{ie scriptmkconv It produces a
mkfile on its standard output. For most makefiles, this is all that needs to be done.

The second kind of changes that need to be made have to be done bytendvolve the use of
side-efects bymake, such as the normal wayacc grammars are handledhe proper way to handle these
grammars is described above; in other cases, the general rule is to tell the truth about dependencies and let
the dynamic time measuring prevent unnecessary Wdkchas much support for the debugging for these
cases, particularly where the makefile is complex or subtie. most useful options arég (to find out the
exact dependency grapkg,(to explain whymk thinks something is out of date), amdand-w (to conduct

11

what if? experiments).

Availability of mk

There are three sources fok depending on who wants iAT&T Bell Laboratories employees can
get it from TOAD. Commercial UNIX licensees can obtairmk from the AT&T Toolchest
(1-800-828-UNIX to talk to a person; 1-201-522-6900, logirest to browse and talk to a computer).
Educational (and Administrativé&)NIX licensees can get an electronic or magnetic tape distribution from

Judith L. Macor

Computing Information Service
AT&T Bell Laboratories

600 Mountain Avenue

Murray Hill, NJ 07974

5. ThePrinciples
Mk’s semantics and syntax were designed according to a few general principles or guidelines.

Use existing syntax and notions. The syntax of mkfiles is almost exactly the same as a makefile
(used bymake). (Theonly syntactic change for rules is the attribute markimk)s variables are exactly
the same as shell variableRecipes are written igh(1), not a special purpose language. The regular
expression syntax and semantics were adopted from existing tools (segieasnded), trading some
awkwardness for familiarity.

Generalize features. Make’s metarules (already a generalization of the eardke sufiix rules) were
extended to full regular expressiondk performs the transitive closure on the target-prerequisite relations
defined by all rules, including metaruleBhe primitive form of parallel processing supportedimke has
been generalized to allow parallel execution of any recie constructing the entire dependency graph
before executing any recipaak maximizes the benefits from parallel processing.

Removing special cases. Make's variables and recipes were so close to being shell variables and
scripts that the differences were removethla Making recipes shell scripts had the further advantage that
mk does not have to parse or process the recipes. The use of special target and prerequisite names
(beginning with a dot) to indicate special actions has been dropped in favor of a more explicit notion of tar
getattributes.

Mk is a general purpose tool. Recent versions ahake (such asnmakeé focus on the issues con-
nected with building software and generally contain much builtin knowledge about C prograniking.
on the other hand, is a tool for maintaining file dependencies, whether they be programs or circuit board
descriptions. Ibffers general purpose and powerful mechanism for all users, not just help for program-
mers.

12

6. Appendix
The following variable definitions are made before processing the environment or any mkfiles.

AS=as
CC=cc
CFLAGS=
FC=f77
FFLAGS=
LDFLAGS=
LEX=lex
LFLAGS=
NPROC=1
NREP=1
YACC=yacc
YFLAGS=

The builtin rules are

%.0: %.c

$CC $CFLAGS -c $stem.c
%.0: %.s

$AS -0 $stem.o $stem.s
%.0: %.f

$FC $FFLAGS -c $stem.c
%.0: %.y

$YACC $YFLAGS -0 $stem.c $stem.y &&

$CC $CFLAGS -c $stem.c && rm $stem.c
%.0: %.1

$LEX $LFLAGS -t $stem.| > $stem.c &&

$CC $CFLAGS -c $stem.c && rm $stem.c

The environment for the recigethell is augmented by these variables:

alltarget all the targets for this rule.

newprereq the prerequisites that are more recent than the target.

nproc this is the process slot for this recipe. It is a number between ze®N&RIOC-1inclu-
sive. ltis useful for parallel execution on a single CPU machine on a network.

pid the process id for thenk invoking this script. This is useful for communicating with
other rules.

prereq all the prerequisites for this tggt. Thismay include prerequisites from several rules.

stem,... the value of% in a metarule. It is null for a non-metarul&he value of thenth subex-
pression in a regular expression metarule is put in the vastdit®, for n<10. Itis null
otherwise.

target the targets being built for this rule.

13

