
Eighth Edition Installation Instructions

You received either one or two tapes. If one, it is at 6250 bpi and contains everything. If two, it is
1600 bpi and is divided between Blit (68000 prototype DMD terminal) and Jerq (WE 32000-based DMD
terminal) support on the one tape, and everything else on the other. All tapes aretar(1) format with block
factor 20, and should be extracted like

tar xbf 20 /dev/raw-tape-filename

into a convenient place. The total is about 52 megabytes; a Blit-Jerq tape will be about 18 MB and an
‘‘everything else’’ tape will be about 52−18 MB.

Almost all files on the tape are owned by root (uid 0) or bin (uid 3) or uucp (uid 48); others are prob-
ably oversights. Almost everything is group bin (4). Group sys (2) is used for things that access /dev/mem
or the disks, for setgid purposes. You will have to decide whether it is simpler to extract the tape as root
(and preserve the numbers) or as someone else, and lose ownership information.

How to bootstrap

The distribution is not set up for bootstrapping to an empty machine. You will have to have a run-
ning system, extract the tape, build your own kernel, and then convert to it. Two file system formats are
supported by the Eighth Edition; one uses 1KB blocks, the other 4KB blocks. The 1K file system is almost
identical to that used by the Berkeley 4.1 (not 4.2!) system; it differs only in the superblock, and the differ-
ences can be repaired by use offsck(8). Likewise, it is believed to be similar in structure to the System V
file system with 1K blocks, but this has not been tested.

The simplest way to boot the system requires a reasonably empty disk.

1. On a running 4.1BSD system, extract the tape into an empty disk partition. Call it /v8. In
/v8/usr/bin, there is a commandv8 that changes root to /v8 and makes you userbin. Now you should
be able to compile things in the Eighth Edition software environment, and in particular to configure
and compile a kernel (/unix). See the configuration and disk-partition sections below. Aside from
/unix, this /v8 partition is already a complete and runnable file system.

2. Copy /v8/bin, /v8/lib, /v8/etc, and /v8/boot to an empty 0-origin (root) partition on some disk. Also,
copy an appropriate boot block to block 0 on this disk. Boot blocks are found in /v8/usr/sys/boot/bb;
see below, and READMEs in neighboring directories. Finally, make a /dev directory with at least
console and null in it. /v8/proto-dev is a list of things we have on one of our machines, as a guide.

3A. You should now have a disk that can be booted. When you made your kernel, you might have speci-
fied that rootdev and so forth were on some drive other than 0, but it is probably simpler to switch
drive plugs or packs to make the v8 disk drive 0. Try to boot it single-user. When that works (you
should write-protect the disk for the first few efforts), you will get the familiar # prompt, and basic
commands likels will operate correctly. Do not create any files; see step 4.

3B. An alternate strategy is to copy your v8 unix to your own /nunix, and see if it works on your own file
system. Make sure it is backed up first.

4. Before creating any files, you should do/etc/fsck /dev/x, wherex is your root device. This will con-
vert your new root into an Eighth Edition file system (mostly, create a new free list). Once you have
done this, if you want to back out, you must run your own fsck in order to convert it back.

5. Now try the usual things, like making proper entries for stuff in /dev, and compiling "hello world."
The latter makes you realize that you have to create /tmp. When you have enough courage, run
/etc/fsck on the file system that was /v8 before. (You should have made a /dev entry for it). One



- 2 -

potential problem here is incompatibility with our disk partitions and yours; see below. Once this has
been done, you can come up multi-user.

Configuration

The system configuration mechanisms are mostly taken from 4.1BSD, with a few changes to
/etc/config; the most important is the ability to write a number after a pseudo-device that specifies how
many instances are wanted. Other differences of immediate use are that config assumes the standard argu-
ment conf, runs in the system directory, and does ‘make depend’ for you. Manual pagesconfig(5) and
config(8) exist in /usr/man, even though they are not in the printed documentation.

Several prototype conf files are supplied; one (alice) is for a large 11/780 with two UBAs, RM03,
UDA50/RA81, and dual-ported TU78. Another (forbes) is for a small 11/750 with Fujitsu 160MB disks on
an Emulex controller. A third (research) is also an 11/750 and besides Datakit, has two Interlan Ethernet
interfaces running TCP/UDP/IP.

To build a new system, generate the files /usr/sys/sysname/conf (containing the basic configuration
information, and corresponding to BSD’s /usr/sys/conf/SYSNAME.) Also write, by interpolation or extrap-
olation, the file /usr/sys/sysname/sparam.h, which specifies parameters for the stream IO system. It would
indeed be better to have the numbers be generated as a function ofmaxusers. Here is the meaning of the
parameters, and a guide to estimating them.

NQUEUE: Two used per active line discipline module, four used per active stream device or pipe.
This means six for each terminal connection, 12 for each Blit window.

NSTREAM: One per stream ending at a process, that is one for each active device, two for pipes.

NBLK*: Number of stream data storage blocks of various sizes; BIG is 1KB. They correspond to
clist blocks in some systems, mbufs in another. When the other resources run out, the console chatters and
the system goes on; when you run out of these, it panics. Things are in fact written so that running out of
stream blocks need not be fatal; the panic is there as a debugging tool, because one of the common stream
bugs is to lose blocks or treasure them up somewhere. If you get this, look at the output of/etc/showq. If
most of the blocks are missing or on some particular queue, you have a bug, and increasing the numbers
will not help. If the blocks are all nicely distributed and well-accounted for, increase the numbers.

Besides configuring devices, you should configure line disciplines; see the samples. In particular,
allow onemesg for every DMD window, onetty for every terminal line and enough spares for DMD win-
dows that have had programs downloaded to them, somenttys if you want to use the C shell. Include thesp
pseudo-device to make the /dev/pt files work; there are always 256 of them.

Onceconf andsparam.h exist, change directories to /usr/sys/sysname, run/etc/config, andmake.

Hardware and booting

On the 750, the system boots through the bootstrap ROM and the boot block. The boot block reads
in /boot from the filesystem at the beginning of the boot device. /boot reads in /unix.

Boot blocks live in /usr/sys/boot/bb. upboot is for UNIBUS Fujis; 4kboot and 1kboot are for 4K and
1K UDA50/RA disks. The last two aren’t really specific to RAs, but use the driver routine provided by the
ROM; unfortunately, /boot doesn’t.

On the 780 and 785, the boot block isn’t used; the console BOOT command executes a command file
which loads boot from the floppy. UNIBUS Fujis, Massbus RP-like disks (such as the RM03 and RP07),
and UNIBUS UDA50 disks are thought to work.

To set up a 750, copy the appropriate boot block to the first sector of the root filesystem. Make sure
you have a useful boot ROM. To set up a 780, cd to /usr/sys/boot/floppy and usearff(8) to add the files
therein to your console floppy. You might want to look at them first, especially if you have interleaved
memory or a non-RP boot device.

The boot program calls UDA disksra when they contain 4K filesystems,sa when 1K.



- 3 -

If you don’t have one of the devices named above, you’ll have to fix things before you can boot. In
particular, Fuji Eagles will probably require some fiddling.

Disk partitions

There is almost certainly going to be trouble here: our disk partitions are probably not the same as
yours. Check the_sizes arrays in the disk drivers for compatibility. If there is a difference between the dis-
tributed numbers and the ones you are accustomed to, you have two choices: change the numbers, or accept
them. If you accept them, then the place you extracted the full Eighth Edition tape is in the wrong spot on
the disk; a new partition must be initialized for it (using mkfs or mkbitfs(8)), and the tape must be reread.

4K file systems

Each file system may use either 1K blocks or 4K blocks (but not both); see filsys(5). One crucial
missing fact is that the kernel recognizes a 4K file system by virtue of the 0100 bit in its minor device num-
ber. 4K file systems are indeed about four times faster than 1K file systems, but have larger breakage costs
for small files. Also, observe this fine print in filsys(5): 4K file systems must be dismounted before the
machine is rebooted, or they must be checked when it comes up, otherwise they cannot be mounted.

Networking

The user-level networking code for Internet (really ethernet) and Datakit is not installed in the distri-
bution. The source is in /usr/src/inet and /usr/src/dk respectively. One peculiarity might be noted with inet:
on a whim, because it was done that way in Australia, the namerlogin was changed torogin. For a more
serious reason, the namercp was changed toropy (rhymes withcopy). We already had a commandrcp,
which does recursive copies. We will probably resolve this eventually by accepting the 4.2rcp and incor-
porating ourrcp into a �R option ofcp.

Miscellany

The version of the manual on the tape is newer than the printed one. The file dates may be of interest
in deciding what is new. Section 2 in particular has changed a lot.

If you have a newer VAX-11/750 with the patchable control store, you should arrange for the
microcode to be loaded by calling/etc/ldpcs /etc/pcs750.bin from /etc/rc. Seeldpcs(8).

Rarepl(8) will replace bad blocks on RA-style disks. The block to be replaced is the lbn named in
the error log packet, not the alleged sector number named by Unix. If you don’t know what an MSCP
event code is, you shouldn’t mess around with this.

Credits

The collection and arrangement of the things in this distribution is the work of Dennis Ritchie, who
swore he would never do this again but did, just not as well; Rob Pike, who did all the Jerq/Blit work; Doug
McIlroy, who produced and directed the manual with less help from the rest of us than he should have had;
and Norman Wilson, who helped enormously, especially with the messy bits.


