
30
Real Time in a Real Operating System

Sape J. Mullender, Pierre G. Jansen

Introduction

The quality of an operating system is more a subject of religious debate than of
technical merit. The Windows community is like the Catholic Church; it has the
largest following, and its members are mostly laymen who do not participate
much in religious debates. The community is organized on strong hierarchical
lines.

The Unix community is like the mainstream Protestant Church; it has not as
large a following as the Windows community, and its members define the system
and run the community. Like the Protestant Church, there are many flavors of
observance: Linux, FreeBSD, NetBSD, Mach; the list is as long as the list of
protestant variants. Most are highly evangelical—a good Protestant trait—with
Linux perhaps being the most fanatical.

The Macintosh community hangs somewhere in the lurch between Windows
and Unix, the Catholics and the Protestants, a bit like the Anglican Church;
they’re Protestants acting like Catholics.

Plan 9 from Bell Labs is like the Quakers: distinguished by its stress on the
‘Inner Light,’ noted for simplicity of life, in particular for plainness of speech.
Like the Quakers, Plan 9 does not proselytize.

Plan 9 is relatively little known and has but a small user community (a few
thousand installations). Nevertheless, it is a complete operating system, and it is
the only operating system booted by many of its users. Plan 9 is also used in sev-
eral embedded environments. For instance, it is the system inside the Viaduct, a
computer system the size of a packet of cigarettes that provides an encrypted
bridge between Lucent employees’ home computers and the corporate intranet. It
is also beginning to find use in experimental wireless base stations.

New technologies (the printing press, organ transplants, birth control) and
changing world views (the solar system, evolution) have always been upsetting
to churches, causing violent debates and schisms. This is just as true in the oper-
ating system community, where new things like object-oriented programming,

214 Mullender, Jansen

copyleft licensing, Ethernet vs. token ring and real-time support can cause simi-
lar violent debates and schisms.

It is the doctrine of real-time support in a general-purpose operating system
that will, in this paper, be stamped with ecclesiastical authority.

We have integrated a real-time CPU scheduler in our operating system Plan 9
[7]. Although our scheduler is a new scheduler in terms of sharing the operating
system resources, it has its fundaments in the EDF scheduler as first introduced
by Liu and Layland [6]. Instead of only considering the CPU resource, our
scheduler also considers other shared OS resources: applications indicate which
resources they require (including processor use), and our scheduler determines if
the set of applications can run concurrently and remain schedulable.

Although other operating systems may also have real-time support, we be-
lieve there are only few general-purpose operating systems with a comparable
native support for real-time applications.

In many embedded systems, some applications have stringent real-time re-
quirements, while others can be best effort. Traditionally, general-purpose oper-
ating systems have never been good at guaranteeing deadlines. Various attempts
have been made to introduce real-time schedulers to general-purpose operating
systems. A few systems deal with real-time applications by shutting out other
applications (the general modus operandi for the Windows family of operating
systems).

In the subsequent sections, we shall describe our system and the theory be-
hind it, omitting, for lack of space, most proofs and a discussion of related work.
As such, this paper has the status of an extended abstract more than a full-
fledged paper. For a more formal introduction, see Jansen & Laan [4], and
Jansen’s forthcoming thesis.

Practicalities

Adding real-time functionality to Plan 9 as a layer below regular user programs
was deemed to be undesirable. At best it would make the API for writing real-
time applications a subset of the standard API; at worst, it would be completely
different. We wanted to give real-time applications access to all operating system
services and access to an interface to control an application’s real-time behavior
as well. The price one has to pay in this approach is that real-time applications
may risk missing their deadline by using non-real-time services.

Although we consider this to be clumsy programming, we have no desire to
forbid it. We envision that, with time, real-time versions of various operating
system services will become available, e.g., a real-time file server along the lines
of Nemesis’ Clockwise mixed-media server [3]. Plan 9 makes extensive use of
file servers, which, through their name space mounted in a per-process mount
table, provides access to much more than secondary storage. The window sys-
tem’s interface is a file system; a play list file system may be associated with an

Real Time in a Real Operating System 215

audio device; mail messages present themselves as subdirectories in a mail file
system, and so on. Talking to file systems is important to most applications, so it
cannot be forbidden. In fact, our real-time scheduler presents itself as a file sys-
tem too.

Another issue was how to deal with processes whose deadlines depend on
one another. The most common example of this is a set of processes in a pipe-
line, for instance, a process decrypting a video stream feeding another that ren-
ders it. Scheduling theory has problems with such dependencies. We chose to
allow several processes to share a single allocation of resources: one period, one
deadline, and one slice of the CPU equal to the sum of the run times required by
each of the member processes.

Resources are identified to the scheduler by name. A resource is shared when
tasks share the name of the resource. When a resource is acquired or released,
tasks inform the scheduler. This is the only involvement the scheduler has with
shared resources. Resources can, therefore, be anything. One important assump-
tion is that tasks give up any resources they hold when they give up the proces-
sor. Tasks can cause themselves to be scheduled non-preemptively with respect
to each other by sharing a resource full time. When they share no resources, a
task with an earlier deadline can always preempt a task with a later one.

Theory

A task set � consists of a set of preemptable tasks �i (i = 1 ... n). Each task �i is
specified by a period Ti, a deadline Di, a cost Ci, and a resources specification �i.
It is released every Ti seconds and must be able to consume at most Ci seconds
of CPU time before reaching its deadline Di seconds after release (Ci � Di � Ti).
We use capital letters for intervals (e.g., T, D, C) and lower case for points in
time: in particular, r for the next release time and d for the next deadline.

The utilization U of � is defined as
i

n
i i TCU /0� ==

For � to be schedulable, U � 1 must hold. We define two functions, processor
demand H(t), introduced by Baruah et al. [2], and workload W(t), introduced by
Audsley et al. [1], H(t) represents the total amount of CPU time that must be
available between 0 and t for � to be schedulable. W(t) represents the cumulative
amount of CPU time that is consumable by all task releases between time 0 and t.

Figure 1 illustrates the functions for an example task set. All tasks in � are
released simultaneously at t = 0. This is known as a critical instant, the time at
which the release of tasks will produce the largest response time. If � is schedul-
able from a critical instant, it is schedulable from any other starting point. A
critical instant occurs in resource-free preemptive EDF scheduling when all tasks
are released simultaneously. This is a well-know result, but we have also proven
it for our EDF scheduler.

216 Mullender, Jansen

0 5

. .

10

. .

15

. .

0

5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

15

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

W(t)

H(t)

Ltask D T C
τ 1 3 4 1
τ 2 5 8 1
τ 3 6 10 2
τ 4 9 15 4

1

2

3

4
0 5 10 15t´

Figure 1: Example task set and its EDF schedule on the left, and the processor demand
and workload functions on the right.

The right half of the figure shows the functions H and W as a function of
time. It also illustrates the schedulability analysis. Note that the vertical distance
between W and the diagonal in the graph represents the amount of work still to
do in released tasks. At point L, there is no more work to do, and the system be-
comes idle. H represents the amount of work that must be finished. If H crosses
the diagonal, then more work would have to be finished than there is time avail-
able. The schedulability analysis tracks W and H until either W touches the di-
agonal or H crosses it. If H crosses the diagonal, the task set is not schedulable.
If W touches it, the task set is schedulable. The example task set is thus schedul-
able. Task sets can be constructed in which neither W nor H reaches the diago-
nal. The schedulability analysis, therefore, traces these functions for only a
predetermined maximum number of steps and rejects a task set if this maximum
is reached.

The scheduler manages the set of admitted tasks using two queues and a
stack: The Wait Queue holds tasks awaiting their release. When a task gives up
the processor or reaches its deadline, it is put on this queue, in release-time or-
der, from which it will be transferred to the next queue when it is released. The
Released Queue holds processes that have been released but have not yet run.
This queue is maintained in deadline order, earliest deadline first. The Run Stack
holds the tasks that have already run; the currently running task is at the top of
the stack and pre-empted the task immediately below.

The scheduler maintains two timers. The Release Timer goes off when the
task at the head of the Wait Queue needs to be released. Released tasks are then
transferred to the Released Queue. The Deadline Timer goes off when the cur-
rently running task reaches its deadline. When this timer goes off, the currently
running task is removed from the (top of the) stack and put back in the Wait
Queue.

Real Time in a Real Operating System 217

When a task gets to the front of the Released Queue or when a task is popped
from the Run Stack, the deadlines of the task at the head of the Released Queue �
and the task at the top of the stack �' are compared. If d� < d�', it is removed from
its queue and pushed onto the Run Stack. Then the Run Timer is set and the task
gets the processor. If both Run Stack and Released Queue are empty, best effort
processes are scheduled.

A resource specification � is a series of zero or more quadruples name, R, C,
{�'}, where name names the resource, R indicates whether the resource is a
shared-read or (in its absence) an exclusive-access resource, C is the cost of the
resource (the time the resource is held), and {�'} is a sub-specification which
specifies nested resources, or may be absent. An example of a task set with a
resource specification is:

D=4s T=5s C=1s resources='a R 900ms { b }'

D=5s T=8s C=1s resources='a R 800ms {b 200ms { c 100ms }}'

D=6s T=10s C=2s resources='b R 200ms c R 1.7s { b R 1.3s }'

D=9s T=9s C=3s resources='a R 1.8s { c R }'

When costs are omitted, they are inherited from their parent resource specifi-
cation or, in the case of a top-level specification, from the task’s cost C. Note, by
the way, that the strings in this example can be written precisely as they are to
the scheduler file system to specify a task’s real-time parameters.

Task 1 has a period of 5 seconds, a deadline of 4 seconds (if it is released at
t, its deadline is at t + 4 and its next release is at t + 5); it needs at most 1 second
of CPU time between release and deadline. Resource a is shared by tasks 1, 2,
and 4. In all cases it is a shared-read resource, so it imposes no restrictions on
the schedulability of these tasks. Resource b is shared by tasks 1, 2, and 3. Task
1 needs exclusive access to it, and for the full 900 ms, it also holds resource a.
Task 3 needs shared-read access to resource b for 200 ms and again for 100 ms
while holding resource c.

The principle behind scheduling a task set with shared resources is that we
keep tasks on the Released Queue until there are no tasks left in the Run Stack
holding resources that the task on the Released Queue may claim. Thus, it is not
possible for a task to (try to) claim a resource already held by another task. Such
a task would simply not have been scheduled. Tasks never need to be preempted
waiting for a resource.

Here’s how we enforce this: every resource R is assigned an inherited dead-
line �R = min�∈� D� | R ∈ �, the minimum of the deadlines of all tasks using R.
Every task � also receives an inherited deadline �� = minR �R | R ∈ �, the mini-
mum of the inherited deadlines of all resources used by the task. A task’s � thus
changes as the task acquires and releases resources; � is only relevant for run-
ning tasks.

Each released task is now characterized by the triple {d, D, �}, where d is
the current absolute deadline (D is the deadline interval; d is the absolute dead-
line).

218 Mullender, Jansen

Earlier, we presented the scheduling rule that the task � at the head of the Re-
leased Queue would move to the top of the Run Stack if its d� was less than d�' of
the task �' on top of the Run Stack—a released task with an earliest deadline will
pre-empt the currently running task. Now we modify that rule:

ττττττ ′′ ∆<∧<′ Dddiffpreempts

Figure 2 shows an example Run Stack (rectangles) and Released Queue (el-
lipses). At this time, the task at the head of the Released Queue may not preempt
the one on top of the Run Stack (9 < 7 ∧ 3 < 4 is false). For every task �, �� �
D� and, because of the scheduling rule, for a task � higher on the Run Stack than
another task �', D� < ��'. There is, therefore, a partial ordering from D to � to D,
etc. up and down the Run Stack. This is indicated by the arrows.

7, 4, 4

8, 6, 5

10, 9, 9

9, 3, 3 12, 8, 7 14, 9, 5

if (9 < 7 && 3 < 4) ...

Released tasks, sorted on d

Running

Preempted

Preempted

d, D, ∆

Figure 2: Example Run Stack (rectangles) and Released Queue (ellipses); the arrows
indicate the partial order between the parameters.

This ordering, plus the definition of �, establishes the property that the cur-
rently running task—which is at the top of the Run Stack—will not attempt to
acquire any resources held by preempted tasks, which are further down in the
Run Stack, because, if they held such resources, their � would be less than or
equal to the D of the running task, and this the scheduler does not allow.

A second property is that there is no transitive blocking, because a process
that is blocked due to shared resource usage only has to wait for the blocker to
release the resource. This property was already known from the Priority Ceiling
protocol [8], a protocol that was the first to introduce static priority inheritance,
similar to our static deadline inheritance.

The schedulability analysis is only moderately more complex with resource
sharing. The processor demand and workload functions do not change, because
the work that needs to be done and when it needs to be done is the same. But we
do have to take into account now that one task may block another’s access to the
CPU.

Real Time in a Real Operating System 219

This causes ‘spikes’ on the processor demand function. The height of the
spikes encodes the time a task may have to wait for a task with a later deadline
that holds a resource the task needs. A task set is inadmissible if one of the
spikes crosses the diagonal. If there are no shared resources, there is no blocking
(and there are no spikes), and the schedulability test reduces to the normal pre-
emptive-EDF schedulability test. If there is one resource, shared full-time by all
tasks, the schedulability test reduces to Jeffay’s [5] non-preemptive schedulabil-
ity test. Our schedulability test spans the range between the extremes of com-
pletely preemptive and completely non-preemptive scheduling.

Implementation

We implemented the scheduler in Plan 9. This was a fairly straightforward proc-
ess, although we had to change the behavior of spin locks in the kernel slightly.
A process is now allowed to finish its critical section before being subject to
scheduling. None of the spin locks hold the CPU longer than 50 µs or so.

As explained earlier, two timers control the real-time portion of the sched-
uler: the Release Timer goes off when the task at the head of the Wait Queue
must be released. If that task gets to the front of the Release Queue, a scheduling
decision is made, otherwise, the current task continues running. When the Dead-
line Timer goes off, the running task has used up its quantum, and the processor
is taken away from it until the next release. We also raise an exception in the
process.

The interesting part about the implementation is the use of a file system to
control the system. In the default mount point of /dev/realtime we find three
files, clone, resources, time, and a directory: task. Existing tasks are repre-
sented by files (whose names are numbers) in the task directory. A new task is
created by opening the file clone, which then behaves like the corresponding
(new) file in the task directory. The main loop for a typical real-time process
would look something like the following:

char *clonedev = "/dev/realtime/clone";
void processvideo(void){
int fd;
fd = open(clonedev, ORDWR);
if (fprint(fd,

"T=33ms D=20ms C=8ms procs=self admit") < 0)
sysfatal("%s: admission: %r", clonedev);

while (processframe())
fprint(fd, "yield");

fprint(fd, "remove");
close(fd); }

This sequence creates a new task by opening /dev/realtime/clone, sets
period, deadline and cost, and puts the running process into the process group of

220 Mullender, Jansen

the task. It then asks the scheduler to admit the new task by running the sched-
ulability test. If the write succeeds, the task was admitted.

The main loop processes a video frame and then gives up the processor
(yield) while waiting for the next frame. When the application has finished, it
removes the task from the system and exits.

Conclusion

The real time scheduler is installed in the currently distributed version of Plan 9
(obtainable through plan9.bell-labs.com). It has already been used in sev-
eral applications, one of them an experimental wireless base station. But there
have not been any applications that have challenged the scheduler much.

We have had some lively debates over whether it is worthwhile to have a
real-time scheduler that can manage shared resources. Most of the real-time ap-
plications we considered do not have any resources that are shared. But one real-
time application we built has nothing but shared resources: the Clockwise mixed-
media file system has many real-time processes, with varying periods and costs,
sharing disks. As it turned out, scheduling the disks was much more important
than scheduling the CPU, so the Plan9 scheduler would not have been adequate
for this application.

The battle about whether or not to include support for resource sharing in our
real-time scheduler was won by the resource-sharing camp when the algorithms
presented here emerged: the schedulability test is not overly complicated and the
run-time complexity is practically O(1): only the queue insertions are not con-
stant-time operations, but the queues are invariably very short. In addition, the
scheduler prevents resource contention from causing gratuitous context switches,
and it is completely deadlock free. Finally, the same scheduler can trivially be
used for preemptive or non-preemptive real-time EDF scheduling.

References

1. AUDSLEY, N.C., BURNS, A., RICHARDSON, M.F., AND WELLINGS, A.J., ‘Hard real-time
scheduling: the deadline monotonic approach,’ in Proc. 8th IEEE Workshop on
Real-Time Operating Systems and Software, Atlanta, Georgia, 1991. Available at:
http://citeseer.nj.nec.com/article/audsley91hard.html

2. BARUAH, S.K., MOK, A.K., AND ROSIER, L., ‘Preemptively scheduling hard-real-time
sporadic tasks on one processor,’ in Proc. of the Real-Time Systems Symposium,
1990, pp. 182–190.

3. BOSCH, P., MULLENDER, S.J., AND JANSEN, P.G., ‘Clockwise: a mixed-media file
system,’ in Proc. of the IEEE Intl. Conf. on Multimedia Computing and Systems
(ICMCS), II, Firenze, Italy, 1999, pp. 277–281. Available at:
http://www.cwi.nl/~peterb/papers/icmcs99.ps.gz

Real Time in a Real Operating System 221

4. JANSEN, P. G., AND LAAN, R., ‘The stack resource protocol based on real-time trans-
actions,’ in IEEE Proc. Software, vol. 146, no. 2, 1999, pp. 112–119.

5. JEFFAY, K., STANAT, D.F., AND MARTEL, C.U., ‘On non-preemptive scheduling on
periodic and sporadic tasks,’ in Proc. of the Real-Time Systems Symposium, 1991,
pp. 129–139.

6. LIU, C. L., AND LAYLAND, J. W., ‘Scheduling algorithms for multiprogramming in a
hard real-time environment,’ Journal of the ACM, vol. 20, no. 1, 1973, pp. 46–61.

7. PIKE, R., PRESOTTO, D., DORWARD, S., FLANDRENA, B., THOMPSON, K., TRICKEY, H.,
AND WINTERBOTTOM, P., ‘Plan 9 from Bell Labs,’ Computing Systems, vol. 8, no. 3,
1995, pp. 221–225. Available at:
http://plan9.bell-labs.com/sys/doc/9.html

8. SHA, L., RAJKUMAR, R., AND LEHOCZKY, J. P., ‘Priority inheritance protocols: an
approach to real-time synchronization,’ IEEE Trans. on Computers, vol. 39, no. 9,
1990, pp. 1175–1185.

