
A kernel trace device for Plan9∗†

Ronald G. Minnich
John Floren
Aki Nyrhinen

May, 2008

Abstract

We describe a Plan 9 trace device, devtrace, its uses and its implemen-
tations. The trace device can be used to selectively trace functions and
processes in Plan 9. Users can enable a range of functions to be traced,
observe which of the functions are called, in what order, what their pa-
rameters are, and the time spent (in CPU ticks) in each function. We
have devloped a set of tools for plotting this data to make the progres-
sion and timing of function calls clear. Since all Plan 9 file systems are
user level processes, it is possible to trace a single process file I/O as it
progresses from the process, through the file server processes, and to disk.
This measurement, in turn, allows us to propose changes in the Plan 9
kernel design and implementation to improve performance.

The implementation of the trace device went through several distinct
phases. In the end, we arrived at a device with a textual interface. Users
need not write programs to use the trace facility. The trace device does
not rewrite kernel code and hence does not require priveleged access (as
in Linux or Solaris). Any user of a Plan 9 terminal can measure their
system’s performance.

The trace device was designed to help us with performance evaluation
of Plan 9 on two supercomputers, the Cray XT4 and the IBM BG/P.

1 Introduction

This project started out as a simple question: where is the time going in Plan
9, and why? Plan 9, in earlier years, had been uniformly faster than other
operating systems. In recent years, however, the continuing improvement in
competititors, particularly Linux, has begun to show. Plan 9 loses badly on mi-
crobenchmarks such as the lmbench pipe throughput test. Interestingly enough,

∗
†Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin

Company, for the United States Department of Energy’s National Nuclear Security Adminis-
tration under contract DEAC0494AL85000.

1

Plan 9 continues to “feel” faster on slower hardware, showing that microbench-
marks are not everything. But, nonetheless, we wanted to be able to isolate the
overheads in Plan 9 and see if either an implementation or architecture change
was appropriate. Our primary use of Plan 9 is in High Performance Computing
(HPC) systems, in which overall throughput can depend on very small over-
heads that don’t much matter in desktop systems. Isolating problem overheads
and removing them is a very common activity in HPC.

Plan 9 is a very small, tightly crafted operating system. It has only 40 or
so system calls. A given file system IO call will result in a call stack that is
only a few levels deep, as opposed to the (literally) dozens of call levels found
in, e.g., a Linux NFS I/O. Modifying Plan 9 system calls in simple ways is a
far less daunting task than on other operating systems. Also, Plan 9 is very
modular; the boundaries between components are well-defined and adhered to,
with very little of the shared state that characterises most operating systems.
This separation enables the inclusion of changes as long as they do not break
the interfaces. Hence, it is very likely that, given the discovery of a major
overhead that might be avoided by a straightforward redesign, the redesign can
be incorporated in the kernel. Recently, the virtual memory subsystem was
almost completely redesigned and it affected only one other source file – the
early bootstrap code.

To give some flavor of what the trace device allows, we show a real trace
in Figure 1. The data and plot were created using devtrace and a processing
pipeline described later in this paper. The trace shows the kernel functions
called by an ’echo’ command. Echo writes its arguments standard out using the
write system call. As expected, most of the time is spent in the write system call
itself, and a huge fraction of that time is spent in memmove. It can be seen that
the memmove in this case is bracketed in time by the write system call. Since
we are only tracking this one process, we can attribute all of the time spent in
memmove to that system call. This overhead raises all sorts of questions, which
can for the most part be answered with devtrace.

As with most Plan 9 devices, the interface to devtrace is textual. There are
two files: tracectl and trace. The tracectl file is used to both query the trace
device and control its actions; the trace file is used to read trace records. To
provide some feel for how these files are used, we show a sample trace interaction
in Figure 2. To see the initial state, we start by cat’ing the tracectl file with
no tracing set up; it shows the size of the trace log buffer (8192 trace records);
and the process IDs (PIDs) that are being watched (watch 0, meaning all PIDs)
along with some internal information, the most important being the tracehits
(how many traces the device has recorded) and the number of records in the
queue (’in queue’).

The trace device is not set up to do anything; to use it, we next set up a
trace. We first create the trace description, specifying a start and end program
counter (PC) range. For convenience, we allow the addresses to be specified as
an offset from the start of kernel text (we can specify the full address but this
form is a lot easier to type). Every trace description has a name. In this case
we are tracing all the functions in the real time clock (rtc) driver so we call this

2

poolallocl
poolalloc

smalloc
ptealloc

pio
fixfault

fault
faultamd64

trap
trim

memmove
copypage
duppage
i8250kick

uartkick
i8250interrupt

mallocz
poolmsize

msize
_allocb
allocb
qwrite

putstrn0
write

syspwrite
syscall

validname0
validnamedup
_fmtdispatch

dofmt
vsnprint

sprint
newpath
poolfreel
poolfree

free
devattach

kstrdup
growparse

parsename
devgen

devwalk
ewalk

copypath
uniquepath

addelem
pathclose
chanfree

cclose
walk

devopen
namec

sysopen
snprint

read
syspread

fdclose
sysclose
closefgrp
closergrp

_strfmt
freepte
putseg

’plotme’ using 1:2:3:ytic(5):xtic(1)

Figure 1: A sample trace output with tracedev. The X axis is in units of
processor ticks.

3

cpu% cat /dev/tracectl
logsize 8192
#tracehits 0, in queue 0
#tracelog ffffffff81a48d68
#newplfail 0
#traceactive 0
#slothits 0
#traceinhits 0
watch 0
cpu% echo trace 119f61 11aac8 new rtc > /dev/tracectl
cpu% echo trace rtc on > /dev/tracectl
cpu% echo start > /dev/tracectl
cpu% cat /dev/rtc
1212487238
cpu% cat /dev/tracectl
logsize 8192
trace ffffffff80119f61 ffffffff8011aac8 new rtc
#trace ffffffff80119f61 traced? ffffffff815e4778
trace rtc on
#tracehits 362, in queue 362
#tracelog ffffffff81a48d68
#newplfail 0
#traceactive 1
#slothits 365
#traceinhits 181
watch 0
cpu% echo stop > /dev/tracectl

Figure 2: Setting up a trace session.

trace ’rtc’.
Traces are not enabled by default. To enable a trace, we issue the ’trace rtc

on’ command, using the name we set up in the previous command. We also
have to actually enable the trace device itself, with the ’start’ command.

This setup is very similar to a logic analyzer setup. We create the triggers,
enable some of them, then start the logic analyzer. Once we have initiated
activity to (hopefully) trigger the filters, we stop the analyzer and look at the
results. In this case, running the command: cat /dev/rtc should cause some
rtc functions to run and trigger the rtc trace description we set up earlier. To
check the state of the trace device, we can cat /dev/tracectl again, and we see
that there are 362 hits and 362 records in the queue. We next stop the trace
device; it is time to look at the data.

As you can see, the tracectl contains information and commands; since the
output of tracectl is a valid input to the tracectl, one can cat the tracectl file
and save it, using it to set up the identical trace later.

4

E ffffffff8011aa68 000088297eecd2e7 000000000000023c 00000000000007be
ffffffff81accb78 ffffffff81a4d2a8 ffffffff0000000a
X ffffffff8011aac7 000088297eecd445 000000000000023c ffffffff801abc78
0000000000000000 0000000000000000 0000000000000000

Figure 3: Data output from /dev/trace

Figure 3shows two lines of output from the trace device. The format of the
line is:

• E or X indicating entry or exit

• The PC

• The processor time stamp counter, 64 bits

• The process ID

• E records: the first four arguments1; X records: the return value

The rest of this paper is structured as follows: first, we provide an overview
of related work; then we describe the current implementation and the post-
processing tools that we have developed to analyze the traces. We next describe
some possible alternatives to our implementation. Finally, we close with a de-
scription of future work.

2 Related work

There have been many implementations of kernel tracing facilities over the years;
more tracing facilities than there are operating systems. Trace systems gener-
ally have one of three goals: debugging, which requires a tremendous amount of
flexibility; tracing calls and times, which requires recording function invocation,
arguments, and timing; and profiling, which requires only recording the function
start address and time spent in that function, which is accumulated in a his-
togram (i.e. time for individual function calls are lost; only the total time spent
in each function is recorded). There are common techniques for implementing
a trace system, namely:

1. rewrite-based (a.k.a. self-modifying code). A program or driver sets a
breakpoint or a jump by actually rewriting part of the kernel text. The
kernel manages the breakpoint or jump by calling a specified function.
The function can be pre-defined and the same for all traces, or arbitrary
and specified when the trace is created.

2. code-based. Programmers insert a call to a logging function at various
places in the code at compile time.

1If the function takes fewer than four arguments the extraneous argument values are invalid
and should be ignored.

5

3. automated. This technique is a variation on code-based. As part of the
kernel build process, the compiler or linker generates code that calls a
function for each function entry and exit.

4. hardware. Code is instrumented by hardware using special-purpose at-
tached I/O devices or logic analyzers(author?) 1. This technique often
requires some form of code-based support to write tags to the hardware
at the proper points.

2.1 Rewrite-based

Rewrite-based tracing replaces a portion of the kernel code with code that calls
a handler.The trace setup code allocates a buffer, saves the written-over code
in it, and installs a jump to the code buffer in place of the written-over code.
The buffer contains written-over code, a call to the trace support code, and
code that resumes the function. See Figure 4 for an example. A corresponding
code buffer is created for function exit. The handler can be a user-provided
function, sometimes called “trigger code”. Typically, trigger code logs the event
and variables of interest, which are almost always the parameters to the function.

The code that is written over can be replaced with a breakpoint instruction or
a jump instruction. Kprobes, in the Linux kernel, is breakpoint-based; djprobes
is jump-based – although as part of the installation process, djprobes begins by
inserting breakpoints. Breakpoints have the advantage of being small, usually
one byte; they have the disadvantage of high cost in time, since a breakpoint
ends up in the interrupt handling code.

In some of these systems, a pre-written function is called; in others, users
tracing kernel code must write a complete kernel module containing the trigger
code functions. The trigger code can be used for more than one traced function
but must be able to disambiguate the multiple callers - i.e., function exit and
entry, or different functions. In Kprobes, DJprobes, and many other systems,
the user must write a module that explicitly names the functions to be traced,
when the trace module is compiled. Further, users wishing to export the data
from the trigger code to user mode must write additional code to move the data
to another kernel subsystem (e.g. relayfs, now known as relay), from which the
user program can extract it from the kernel. Kprobes supports the tracing, but
not the data transport.

While this code replacement might seem straightforward, albeit tricky, when
the impact of shared memory multiprocessors, caches, interrupts, and all possi-
ble corner cases are considered, it is quite complex. Some of the issues include:

• For a period of time, as the function is being modified, the function code
is in an invalid state and will crash the machine if executed. It is essential
that the modified function code and the code buffer not be used while the
rewrite is happening.

• Whether any processors are executing code that is to replaced with a jump.
Here is one reason that an interrupt instruction is preferred: it is one byte,

6

Original function code

function entry

Function body

Function exit

Allocate Code Buffer

Copy Code

Modified function code

Jump to code buffer

Function body

Jump to code buffer

Code Buffer

Call trace function

Function Entry

Jump to function body

Call trace function

Function Exit

Figure 4: An example of jump-based probes

so there are no issues with multibyte instructions that might span cache
lines.

• How much of the code needs to be copied. On an i386 or other CISC
CPU, with variable length instructions, the jump instruction might cover
0, 1, more instructions. In fact, the jump instruction rarely covers an
integral number of other machine instructions, so that although the jump
instruction might be only (e.g.) 5 bytes, more than five bytes might need
to be copied.

• The actual content of the written over code. The written over code might
not be position independent; might contain a jump or an interrupt call;
might be an interrupt handler; or it might cause a page fault. All these
cases must be handled. Kernel code has to evaluate the code, and deter-
mine whether to run the code in the buffer, emulate the code in software,
or return the code to its place of origin and run it in single-step mode. We
show the latter scenario in Figure 5.

• Whether the handler code might itself be probed.

• Whether the code buffer can be freed. At what point can the kernel be
sure that no processes are executing the code buffer? The trigger code
might take a page fault, call another kernel function, or abort and never
return.

• Whether multiple probes are to be attached to a single function.

7

• Whether the process installing the traces exits cleanly or not.

• Whether a kernel module is installing a trace on itself.

Multiprocessor machines add a host of difficulties. The code may be rewrit-
ten in one processor, but we have no guarantee of when or if other processors will
see the changes – or, still worse, see some but not all of the rewritten memory.
As pointed out in (author?) (2), the problem“... is equivalent to the problem of
finding RCU quiescent state without rcu read lock()/rcu read unlock().“. The
task of moving code so as to redirect it requires that we determine if the execu-
tion of an arbitrary piece of code will ever terminate,and is in fact equivalent in
difficulty to the halting problem.

The Dynamic Kernel Modifier (DKM) solved one part of this problem, but at
a great loss in flexibility. DKM was limited to replacing only a known common
set of function prologues, identified by their binary signatures. These function
prologues contain only push or pop instructions, load constant into registers, or
register to register moves. We determined that this set of limited instruction
sequences covered a significant fraction of the function prologues in the Linux
kernel, mainly because gcc uses the callee-save model and generates very similar
code for many functions. DKM’s simpler design and code flow were possible
because the function prologue code was location-independent. DKM did not
solve the SMP problem, however, and hence only eliminated a fraction of the
complexity of kprobes or djprobes.

2.1.1 dtrace

This section would be incomplete without a reference to Sun’s dtrace, possi-
bly the most sophisticated rewrite-based system, and certainly the standard by
which all other kernel trace tools are measured. Dtrace is a debugging oriented
tool, and hence has a great deal of flexibility. Dtrace can set a probe point on
any of tens of thousands of places in the Solaris kernel. The trace points can run
always installed, since their cost when not activated is zero. Unlike most other
Linux or Unix trace systems, dtrace provides a rich support system for naming
probes, acquiring the data created when probes are triggered, and processing
the data to simplify analysis. Dtrace supports both so-called “static tracing”,
essentially a code-based tracing mechanism, and a “function boundary” tracing
mechanism, implemented with the same technique as DKM: relying on the fact
that function entry and exit have a characteristic set of location-independent
instructions. Dtrace replaces one instruction with a TRAP instruction, and,
rather than executing the written over code, emulates it in software. Conse-
quently, the cost of executing a dtrace trigger code is fairly high. Dtrace shares
the problem of most code rewriting strategies, in that the kernel code can be in
an invalid state while the rewrite is being done.

8

Original function code

Function entry

Function body

Function exit

Allocate Code Buffer

Copy Code

Modified function code

Jump to code buffer

Function body

Jump to code buffer

Code Buffer

Call trace function

Function Entry

Jump to function body

Call trace function

Function Exit

Copy function entry code back

Run in single step mode

Modified function code

Function Entry

Function body

Jump to code buffer

Code Buffer

Call trace function

Function Entry

Jump to function body

Call trace function

Function Exit

Copy Jump code back

Continue rest of function body

Modified function code

Jump to Code Buffer

Function body

Jump to code buffer

Code Buffer

Call trace function

Function Entry

Jump to function body

Call trace function

Function Exit

Figure 5: Modifying the code, restoring it, and running it

9

2.1.2 Performance issues with code rewrite tracing

As we can see, code rewriting is complex and has a number of non-obvious costs:
making sure no processors are executing code that is being rewritten; making
sure all processors see the changes once they are finished; executing the code
that has been moved; and managing the problems that can occur when arbitrary
code has been moved to another location.

One additional concern that is not immediately obvious, for performance
measurement, is the differential cost of executing a function when it is traced.
Consider the case when non-traced functions, in a tracing-enable kernel, see
no performance penalty. Those functions that are traced will appear to have
a much higher comparative cost than they do in reality. If we measure, e.g.,
the performance of a program that uses non-traced functions, we will artificially
inflate the cost of a program that uses traced functions.

In contrast, in the Plan 9 trace device, the time to run all functions is
uniformly increased whether they are traced or not. As a result there is a
closer correspondence between the time to execute two functions, and hence
two programs which use those functions, even if one is set up to be traced and
one is not. In short, a zero cost penalty for non-traced functions could lead
users to attribute a higher time cost to traced functions than is in fact the case.

2.2 Code-based

Code-based systems have been around for some time. One of the earliest Unix
implementations could be found in the SunOS kernel. Setting up a trace required
the programmer to write a line of code that looked something like this:

trace(mask, arg1, arg2, arg3, arg4);
These lines were conditionally compiled in, and the mask allowed for finer

control of compiled-in trace calls.
A more recent version of code-based tracing is Linux kernel markers. Pro-

grammers insert “markers” at points of interest in the kernel source, e.g.:
trace mark(blk request, “count is %d”, count);
The markers are disabled by default. They are enabled by calling a function

which names the marker, and contains a function pointer and a pointer to private
data. The function will be called when the marker is hit, with the data passed
to it. In order for kernel markers to become generally useful, large parts of the
kernel – all 50 Mbytes of it – need to have kernel markers added. Adding this
additional code to the kernel is quite a major effort and will take some time. As
of 2.6.25, only four markers have been created.

2.3 Automated trace

In an automated trace system, the kernel or the linker generates the trace sup-
port code via a build-time command. An example is the Plan 9 kernel profiling
facility, which is invoked from the Plan 9 linker. The linker in Plan 9 is capable
of inserting code or optimizing code away – it does far more than a traditional

10

linker, sharing code generation responsibilities with the compiler. When it is
invoked with a -p switch, the Plan 9 linker inserts a call to profin at the entry
point of the function, and a call to profout at each exit. The profiling library is
also linked in as part of this process. The only information passed to and used
in the profiling functions is the program counter. The counter is used to create
a histogram of time spent in functions. Relationships between functions, and
time for certain types of calls, is not collected.

This facility can be modified to implement tracing, not profiling, as we dis-
cuss below. To implement automated tracing, we can rewrite the profin and
profout functions.

2.4 Data extraction and analysis

As mentioned above, tracing is only part of the problem. Once the trace function
has been activated, it must produce information and deliver it to a consumer.
The simplest consumer is the kernel system log. Data is produced for the log
by a print function. The bandwidth provided by the log, and the performance
impact of using it, are such that it is rarely used: it is very easy to create so
much data from printing that it is overrun and lost. Instead, the trace facility
can provide a way to provide data for user-level consumers, as in dtrace; or,
the trace facility might require that users set up the means by which data is
delivered to consumers, as in kprobes, djprobes, and other systems.

Another issue concerns the format of the data. Kprobes, djprobes, and
kernel markers all allow unrestricted creation of data streams, both in content
and record size. While a lack of restrictions might seem desirable, it can be
difficult for programs to parse all the possible variations of data output – this
same problem has been seen and documented for, e.g., /proc(author?) (3).
The four markers present in 2.6.25 have this format:

”name %s format %s”
”name %s format %s”,
”ctx %p spu %p”,
”ctx %p”,
This problem has been dealt with before, and it is easy to solve: if the data

size and content are arbitrary, then the format should be in a self-describing,
self-contained format, e.g. s-expressions as defined in(author?) (3). A self-
describing format has many advantages, not the least being that output from
multiple sets of markers can easily be processed by a program which is only
processing a subset of the markers. Programs need not concern themselves
with all possible marker formats, since the self-describing structure of the data
makes it easy to skip markers that are not of interest. Data can be saved and
resurrected years later, and the structure of the data is readily apparent.

DKM, dtrace, and the Plan 9 trace device (devtrace) opt for a fixed-format,
fixed-size data format, for reasons of processing complexity and overhead. DKM
and devtrace also fix the content of the data: a function entry/exit tag; a cycle
counter (processor clock); the program counter; and the first four parameters
(entry) or the return value (exit) of the function. Dtrace has a bit more flexibility

11

but also has a fixed record size. Both DKM and devtrace provide the tracing
facilty and an I/O device from which to read trace events.

2.5 Summary

We have only touched upon a small fraction of the many available tracing facil-
ities. Tracing facilities have been developed over at least the last four decades;
we focus mainly on the Linux systems as they are the most likely to be familiar
to the reader. The systems vary little in their implementation; some are dy-
namic, and installed by code rewrite; others are written into the kernel as code
by programmers; still others are inserted automatically into the kernel by the
compilation toolchain.

The system we have built for Plan 9 (devtrace) is based on the automatic
approach. We build the kernel with profiling enabled but replace the normal
profiling functions. Our trace functions allow users to conditionally enable both
individual functions and individual processes, to allow us to trace (e.g.) file I/O
calls from an editor to the file server and back. The control of which functions
and processes to trace is accomplished by writing textual commands to a control
file, in the usual Plan 9 manner. We now describe this system in more detail.

3 The Plan 9 trace device

The Plan 9 trace device is an automated trace device that does not use code
rewriting. To use it, programmers add the -p switch to the Plan 9 linker com-
mand for the kernel, and also link in two additional files: the C code for the trace
device itself and the assembly code that implements and replaces the standard
profin and profout functions. The assembly code is needed to ensure that the

interposed profiling calls do not interfere with argument or return values.
The profin/ profout assembly code is limited to the minimal support needed

on a per-architecture basis. The functions test to see if tracing is globally enabled
and, if so, push the first four args (on entry) or the return value (on exit) and
call C functions named tracein and traceout. The main modification from the
standard functions is in the provision of the additional information. As an
example we show the assembly support code for the AMD Opteron in Figure 6.

The C code implements the rest of the tracedev functionality and, again,
provides a device interface for controlling the device, determining status, and
reading the data. In the Plan 9 manner, the device supports two files: ctl and
data.

Data file

The data file is read-only and, when read, returns trace records as text. For 32
bit architectures, the records are 64 bytes long and formatted as a follows:

E 00000000 0000000000000000 00000000 00000000 00000000 00000000
X 00000000 0000000000000000 00000000 00000000 00000000 00000000

12

TEXT profin(SB), 1, $0
/* check the global trace flag */
CMPL traceactive(SB), $0
/* skip this code if tracing is not ready */
JEQ inotready
/* push arg 4 */
MOVQ 32(SP),AX
PUSHQ AX
/* push arg 3 */
MOVQ 32(SP),AX
PUSHQ AX
/* push arg 2 */
MOVQ 32(SP),AX
PUSHQ AX
/* push arg 1 – which is held in bp */
MOVQ BP,AX
PUSHQ AX
/* push the PC */
MOVQ 32(SP),AX
MOVQ AX,BP
PUSHQ AX
CALL tracein(SB)
/* pop stack */
POPQ AX
POPQ BP
POPQ AX
POPQ AX
POPQ AX
inotready:
RET
/* slightly easier: only need to save AX, the return argument */
TEXT profout(SB), 1, $0
/* again, skip if we’re not enabled yet */
CMPL traceactive(SB), $0
JEQ notready
/* save the return arg */
PUSHQ AX
MOVQ $0,AX
PUSHQ AX
/* move return arg to BP, which is arg 1*/
MOVQ 16(SP),BP
CALL traceout(SB)
POPQ AX
POPQ AX
notready:
RET

Figure 6: Assembly support for Opteron
13

logsize 8192
trace ffffffff80168c50 ffffffff80170000 new v
#trace ffffffff80168c50 traced? ffffffff8159fdb8
trace v on
#tracehits 0, in queue 0
#tracelog ffffffff819d7e28
#newplfail ffffffff00000000
#traceactive 1
#slothits 3
#traceinhits 0
watch 84

Figure 7: Sample output from the ctl file

The E or X indicates function entry or exit. The first word is the PC, the
second the time stamp counter,the third the PID. E records show the first three
parameters, and X records show the return value.

On 64-bit architectures, the records are 128 bytes long, as follows:
E 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000
X 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000
E records on 64-bit machines show the first four parameters.

Ctl file

The ctl file, when read, returns information about the state of the device. As in
many Plan 9 devices, strings read from the ctl file contain valid commands; the
output of the ctl file can be saved and written back to the ctl file. The main use
of the ctl file is to control tracing. Programs, scripts, or users echo commands
into the file. The commands are shown in Table 1.

This set of operations allows tracing some or all of the kernel. We can restrict
the set of functions traced, as well as the set of processes traced. We can follow
a write system call from a process to the file system server, its archival backup,
and from there to the main disk drive. We can look at the sizes of writes and
determine where the bottlenecks are in the I/O system. Most importantly, by
design, the overhead is uniform – not low, however, but uniform, so that the
cost of functions relative to each other is roughly the same, traced or untraced.

Sample output from the ctl file is shown in Figure 7.
The next section discusses the internals of the trace device, and then describe

the tools we have developed for visualizing control flow of the kernel.

3.1 Trace device internals

Plan 9 devices follow a certain structure, consisting of a set of static functions
and a structure which is initialized with those functions. This structure becomes

14

Command parameters description
trace <start-address>

<end-address>
new <name>

Creates a new trace. trace
<name>. The trace is set up

but not enabled. Large batches
of traces can be set up and

enabled later.
trace <name>

remove
removes the trace named

<name>
trace <name> on enables the trace named

<name>
trace <name> off disables the trace named

<name>
size <size log 2> resizes the kernel-based trace

buffer to 2size records
query <address> determines if the given address is

traced. Useful for testing.
testtracein <addr>

<arg1> <arg2>
<arg3> <arg4>

simulates entry into traced code.
Useful for testing both the
device and programs that

process the data.
watch <pid> enables tracing on a process id

(PID)-specific basis and further
enables tracing on that one PID

only.
start enables tracing globally (the flag

is tested in profin/ profout
assembly code)

stop disables tracing globally (the flag
is tested in profin/ profout

assembly code)

Table 1: Trace device commands

15

part of a linked list of device structures. None of the device functions are visible
outside the device structure.

The trace device differs from most Plan 9 devices in that it additionally
exports two architecture-independent C global functions, which are called from
architecture-dependent assembly linkage functions. The architecture-independent,
global device functions are tracein and traceout:

• tracein(void* pc, uintptr a1, uintptr a2, uintptr a3, uintptr a4)

• traceout(void* pc, uintptr retval)

. The uage of trace and traceout is outline in Figure 10.Their function is to
conditionally add a trace record to a record buffer. A single record element is
defined as follows:

struct Tracelog {
u64int ticks;
int info;
uintptr pc;
uintptr dat[5];

};
A u64int is a 64-bit unsigned integer. The uintptr type is defined (in Plan

9) to be the basic machine int type that is large enough to hold a pointer – in
other words, a type that can represent a program counter, i.e. a pointer, and an
integer. This type is hence different on different architecures, both in element
size, structure size, and endian-ness.

This structure represents the internal tracelog format and, unlike the Linux
devices, is not exported from the kernel to the user as such. Exporting this
binary data directly would make the device interface architecture-dependent.
Plan 9 is a distributed operating system designed for heterogeneity, and data
such as this is always delivered to user mode in an architecture-neutral format –
both endian and word-size independent. Architecture-neutral data formats al-
lows one host to import another host’s device files and operate on them directly.
The format exported to user mode is textual, as described earlier.

As mentioned, the Tracelog records are accumulated into a trace buffer,
which defaults to holding 8192 trace entries. The trace buffer is always a power
of 2 in size, to ease the computation of FIFO pointers. The trace device keeps
a write (pw) and read (pr) pointer, with low order bits being used as an index
into the trace buffer. If an overrun occurs, old records are overwritten with new
ones. The values of the pr and pw pointers are available from the ctl file, so
overrun is easily detected.

The tracein function:

• checks to see if the PC is traced

• checks to see if we are tracing specific processes and, if so, if this process
is traced

16

struct Trace {
struct Trace *next;
void *func; /* function being traced */
void *start; /* start address of trace range */
void *end; /(* end address of trace ranged */
int enabled;
char name[16];

};
Figure 8: The trace structure

• allocates a trace record (and returns immediately if that fails). Trace
record allocation is done by an atomic increment of pw, and hence is
cheap and SMP-safe.

• Fills the record in with the information

The traceout function is essentially identical, save that the information it logs
is the return value from the function.

Determining whether a Program Counter (PC) is traced

For determining whether a PC is traced, we use a direct-mapped array of point-
ers to trace structures, called the trace map. The trace device trace structure is
shown in FIgure 8.

On the first open of the device, the device allocates a trace map that has as
many elements as bytes of code in the kernel. As trace structures are created via
the trace command, we set pointers to the trace structure in the indices of the
array representing traced areas of the kernel. For example, a trace structure for
addresses 0x80100030 to 0x80100040 would result in indices 0x30 to 0x40 being
populated with a pointer to that Trace structure. To simplify the book-keeping,
we explicitly disallow overlapping trace ranges – including duplicate ranges. To
check whether a PC is traced, we need merely compute the offset of the PC
from the start of the kernel, and, using that as an index into the array, see if
that array element has a pointer to a Trace struct. This approach trades storage
for time and code complexity; given the the Plan 9 code space is less than one
megabyte, it is a good trade.

Determining whether a process is traced

The device maintains a list of traced PIDs. If the array is not empty, signified
by a ’traced PID count’ being > 0, then it looks the PID up in the array to see
if it is traced. In any event, a process that has opened the trace file will not be
traced.

17

Figure 9: Flow of trace functions

18

Returning the data

Processes wishing to read trace records open the trace file and read from it,
via the read system call, which in turn maps into a read function in the trace
device.. The trace device read function, given a read request, formats as many
records as will fit into the read output buffer, and returns.

3.1.1 The difficulties of simplicity

As we have noted, the trace device interface and the device itself are small:
the C code is 800 lines, or roughly 1/3 the size of the Linux kprobes code; the
assembly is less than 50 lines. The device described is the result of several
iterations, not on just Plan 9, but on Linux. We started with a complex device
that rewrote kernel code, based on our earlier work with DKM. The complexity
of that code, comparable in scope to kprobes or djprobes, led us to look for a
better and simpler (albeit less capable) design.

One of our goals is to make the trace data easily accessible to users. Linux
has done an impressive job in this area with tools such as SystemTap. But,
in the end, the Linux tools are very complex systems that are put in place to
control other very complex systems. Using the raw interface of kprobes is a
daunting task, requiring a lot of knowledge of the users. SystemTap eases the
pain, but at the cost of comprehension when things do not go as planned.

In contrast, tracedev follows the Plan 9 path of a simple, regular device
interface that can be directly used – even from the shell or command line. We
regularly control tracedev by echoing commands into the ctl file and using cat
to read the data file. The power of this interface is hard to overstate. Any tool
that can process textual data can pull data from the trace device and process
it.A non-expert can easily use tracedev to monitor Plan 9.

4 Usage examples

In this section we discuss the processing pipeline which produced the graph in
Figure 1; a quick analysis of IO sizes for an interactive Plan 9 session; and an
answer to the question: “What addresses are used when a process communicates
with the kernel? Can we cache translations to speed up system calls?”.

4.1 Visualizing trace device output

Once we had the data, we needed a way to analyse the information. After
working with the data for a while, we realized that the output as shown in Figure
1 would be very useful. No graphiing tool available to us in Plan 9 or Linux
was able to create that output. In the end, we determined that gnuplot was the
most appropriate tool, but even then the data required significant processing to
get it into the proper form.

We wrote a suite of scripts usng rc, the plan 9 shell; acid, the Plan 9 debug-
ger; awk, and sed to generate data appropriate for plotting with gnuplot. The

19

Strip leading 0xf

Map trace adresses

to function names

Convert hex addresses to

decimal

Sort and uniq

/tmp/ntr & /tmp/saddr

re−arrange fields

and sort

join saddr and ntr files

PC (base 10)

RTC (base 10)

type (E or X)

2148639699 183486620344968 E

Plan 9 kernel

rtc trace file

8011a3c9 rtctime

8011a5af rtcread

...

2148638678 rtcwalk 183486620292904 E

2148638757 rtcwalk 183486620300659 X

2148638838 rtcopen 183486620309268 E

2148638947 rtcopen 183486620313238 X

...

183486620292904 2148638678 E rtcwalk

183486620300659 2148638757 X rtcwalk

183486620309268 2148638838 E rtcopen

183486620313238 2148638947 X rtcopen

...

Stackify for gnuplot 3877.5 0 3877.5 3877.5 rtcwalk

18349 1 1985 1985 rtcopen

...

2148639689 rtctime

2148640175 rtcread

...

Figure 10: Processing pipeline

20

echo trace 17a099 17a0a2 new pr > /dev/tracectl
echo trace 17a2cf 17a2d8 new pw > /dev/tracectl
echo trace pr on > /dev/tracectl
echo trace pw on > /dev/tracectl

Figure 11: Command for tracing pread and pwrite

createplot script has the ability to filter out functions which ran for less than
a specified number of clock cycles, which is useful for reducing the amount of
noise in a plot. To generate a plot from the data collected earlier, discarding
functions which completed in less than 4000 cycles, we just ran:

plots/createplot /amd64/9k8pf 4000 ./trace > plotme

and fed the input into gnuplot.

4.2 Example 2: What are typical IO sizes?

Plan 9 I/O is slower than we would like. We might want to speed it up, but first,
we ought to know what sizes of I/O operations occur. All I/O goes through the
pread and pwrite system calls. To get a quick idea of what might be going on,
we decided to monitor only the return values of these calls.

We set up tracing as shown in Figure 11.
These commands are in a script. In one window, we run a small program

which, in the inner loop, reads the trace data and builds a histogram. We
show this inner loop in Figure 12. While this program is running, we started
a window-based editor and viewed programs and copied files, which roughly
corresponds to an ’interactive workload’.

When the user sends the program a signal (or hits the Plan 9 equivalent of
ˆC) then the program dumps the histogram and exits. The result (with a little
help from Octave) is shown below. Simply put, almost 90% I/O operations are
less than 1Kbyte; 1/3 are under 8 bytes. An I/O enhancement strategy designed
around these figures could greatly improve performance.

4.3 Example 3: What addresses are used when a process
communicates with the kernel? Can we cache trans-
lations to speed up system calls?

We consider the case of processes communicating with the kernel. In earlier
work, which showed us the need for the trace device, we determined that getting
user data into and out of the kernel was a costly process. A large fraction of this
time is mapping user level pointers into the kernel address space so that copying
can be done. We speculated that If we can cache frequently used mappings, we
might improve performance, particularly for read and write. For this simple
test, we measure tar cf /dev/null /sys/src.

21

while (1) {
char *cp;
char *fields[16];
cp = readline();
if (! cp)

continue;
getfields(cp, fields, 16, 1, " ");
size = strtol(fields[4], 0, 16);
if (size < 0)

bad++;
else if (size > 16384)

histo[16384]++;
else

histo[size]++;
}

Figure 12: Program fragment for creating a histogram from the trace device
data file. This program is monitoring all reads and writes from other programs
on the system.

Figure 13: I/O sizes for an interactive Plan 9 session on a network terminal.
The X axis is I/O size and the Y axis is a cumulative count of the number of
I/Os. Of the total of 1400 I/Os, 1380 of them were less than 500 bytes.

22

Processes communicating with the kernel pass a user-mode virtual address to
several system calls. It would be a bit of work to set up the 20 or so triggers, but
fortunately there is a function in the kernel, okaddr, which is called to validate
user addresses. Hence we can watch the parameters to the okaddr function. The
success of a caching strategy is critically dependent on the number of different
addresses used – if the number is small enough (e.g. 32), we can easily cache
address mappings; if the number is too large (e.g. 16384) then it is unlikely that
caching is practical.

For this test, our program records the PID and the address passed to okaddr.
We only monitor function entry. The program further converts the address to a
page address (i.e. divide by 4096) since that is the granularity of the value that
is checked by the kernel and also the granularity of the mapping that would be
cached. The results are shown in Table 2. The very large numbers are stack
addresses.

The results show that we could cache as few as 32 page address translations
for a process and eliminate much of the cost of both checking a virtual address
and converting it to a physical address for kernel I/O.

5 Performance

The performance impact of any tracing system is always of concern. To test
performance, we set up a comnmand to copy data from /dev/zero to /dev/null,
on megabyte at a time, in a kernel compiled without profiling, one compiled
with profiling but with tracing turned off, and then again on the profiling ker-
nel with tracing enabled. A kernel was also compiled with profiling enabled
and the assembly-level profin and profout functions executing RET (return)
immediately upon entry. Table 3 shows the results.

There is a very clear difference in performance between each test. Simply
using a kernel compiled with tracing resulted in a 28% time increase over the
non-profiling kernel. Going from a profiling kernel with tracing disabled to a
profiling kernel tracing a section of memory gave a 74% increase in real time.
Interestingly, having profin and profout return immediately gives about the
same 28% hit as using a profiling kernel with tracing disabled; this is likely due
to the pipeline being cleared by the CALL instruction. We may need to further
modify the linker to either inline the functions or find some other way to make
profiling-disabled functions more efficient.

However, when the intended use of the the trace device is taken into ac-
count, i.e. comparative measures of internal kernel function performance, these
performance hits are not particularly problematic. Tracing is useful for gaining
an idea of which functions take longer to execute. Since tracing creates an equal
penalty for all traced functions, the ratios of execution times will still remain
the same. As the plot in Figure 1 indicates, useful information can be gleaned
without even knowing the time scales involved – it is sufficient to simply look
at the graphs and see the different lengths of function execution.

The implementation we chose focuses on portability, and the avoidance of

23

PID page address count
102 4294967294 6
150 4294967294 6
176 15 63
176 16 4087
176 17 556
176 18 484
176 19 188
176 20 254
176 21 445
176 22 431
176 23 566
176 24 51
176 27 43
176 28 264
176 29 201
176 30 104
176 31 121
176 32 166
176 33 68
176 36 5
176 37 61
176 38 131
176 39 6
176 40 3
176 4294967294 14034
178 4294967292 3
178 4294967294 3
193 4294967294 3
199 33 3
199 34 2
199 4294967292 8
199 4294967294 6
51 1 3
51 10 3
51 18 1
51 19 2
51 38 44
51 4294967294 2

Table 2: kernel addresses used for tar, file server, and other server processes for
tar pipeline

24

Profiling level User System Real % penalty
None 2.94 12.07 15.76 0

Included but disabled 3.87 16.34 20.24 28
Tracing I/O system calls 5.23 30.08 35.32 74

profin and profout returning immediately 4.13 16.57 20.71 28

Table 3: Performance for various levels of tracing

self-modifying code (which is what Kprobes, DJprobes, and Dtrace really are),
while incurring a penalty in performance for untraced functions. It would be
possible to write a simpler profin function which pushes the contents of the BP
register to the stack and calls tracein. The tracein prototype would then be

tracein(uintptr arg1, void* pc, uintptr ig-
nore, uintptr a2, uintptr a 3, uintptr a4);

note the uintptr ignore, which is a side affect of the way arguments are stored
in the AMD64 architecture (the first argument is put into the BP register,
but a slot is still left for it on the stack). Such a scheme would ultimately
save 14 MOVQ, PUSHQ, and POPQ instructions. The trick is to make an
architecture-independent tracein function that can be called the same way for
all architectures. We are not sure this trick is possible.

6 Performance optimization

The current design uses the Plan 9 linker to insert an always-executed call
to profin and profout at entry and exit points. As noted, this adds a fixed
cost of almost 28% to common kernel operations. Hence, we can not ship a
kernel with tracing always enabled, as Sun does. The question must be asked:
could we change how we enable tracing? It turns out we can, if we are willing
to consider using a rewrite-based approach. As it happens, we can make this
approach efficient, SMP-safe, and not require additional code buffers for saving
and restoring function code. We can completely eliminate the ’invalid kernel
state’ problem that the other code rewrite systems have.

The linker currently emits the following code, for every function:

CALL _profin(SB)

We can modify the linker to emit a slightly different sequence:

BR .+7
CALL _profin(SB)

The result would be that calls to profin would never happen. In order to enable
the call to profin, one would rewrite the branch (either before the kernel is
booted, or from the trace device) as follows:

25

BR .+2
CALL _profin(SB)

The function return case is easy: instead of

CALL _profin(SB)
RET

We have the linker emit:

RET
CALL _profin(SB)
RET

To trace-enable a return, we simple change the RET to a NOP. The cost for the
non-trace-enabled return is zero.

The only potential concern is the cost of the added branch on function entry:
every function will have an added BR .+7 as the first instruction. This seems like
it ought to slow things down. As it turns out the penalty is not nearly as bad as
we might expect. Initial benchmarks showed encouraging results. We modified
the Plan 9 loader to emit this sequence by default for profiled kernels, and a
number of use-based benchmarks showed a 3 percent overhead, and as low as
1.5 percent on an Opteron. In fact we are using this kernel almost continuously
now as the performance impact is really not noticeable.

In this code rewrite system, unlike the others mentioned, the kernel code is
never in an invalid state: it transitions from one valid state to another. There
is no need for an external code buffer, multiprocessor synchronization as the
probes are installed and removed, or all the other complex overhead of the
other rewrite systems. This design represents a substantial improvement over
other trace devices, combining the best attributes of most of them: minimal
overhead when not enabled; no invalid kernel state; and low cost for inserting a
probe

7 Conclusions and future work.

Devtrace is a kernel trace device for Plan 9. It follows the Plan 9 model of
providing a simple, textual control interface that requires no C code or even
programming on the users part. It differs from other efforts in that it does not
use complexity to hide complexity; rather, it is a very simple device. We showed
two possible implementations. The first requires no self-modifying code as many
other trace devices do. It does extract a high performance penalty, however. The
second implementation extracts a measured penalty of 1.5% (AMD Opteron in
64-bit mode) or 3% (Intel Xeon in 32-bit mode). The second does require self-
modifying code, but not the unsafe self-modifying code used in, e.g., Kprobes
or DJProbes: the kernel code never makes a transition from valid to invalid to
valid, but rather only makes a transition between two valid states.

26

We showed a number of uses of the trace device, including overhead mea-
surement, as well as I/O size measurement. Finally, we showed that the kernel
could implement a cache for virtual addressed that would be effective with as
few as 32 entries. The I/O size measurements and the virtual address measure-
ment point to ways to greatly improve I/O performance while maintaing the
Plan 9 I/O model.

This work has relevance to other operating systems as well. We could mod-
ify other compilers, such as gcc, to emit the performance-optimized trace calls
shown above. It would be easy to have gcc generate the instrumentation for a
Linux kernel. In some ways the gcc work would be easier; we would not need to
write the assembly code interface, but could, rather, have gcc generate it.

Future work includes improving the display of results, as well as providing a
more automated interface.

Appendix A: Alternate
Implementations
There are a number of decisions we made in this design that, in retrospect, we
could take differently. There was also an earlier rewrite-based design that we
stopped developing.

7.1 Earlier implementation: full code rewrite

It is worth mentioning an earlier implementation of devtrace. The interface
was unchanged, save that we added PID selection to the later device. But the
implementation was somewhat different than the approaches taken above. We
show the flow in Figure 14. We rewrote the code for the entry point. To gain
control at function exit, when the code buffer code was executed, we saved a
copy of the return PC in the code buffer and modified the return PC on the
stack. The code buffer thus has a dual role: saving state and running the trace
code.

Once the code buffer was entered, it called the trace function, restored the
function code, modified the return PC on the stack, and then jumped back to
the function. On function exit, code buffer code was again executed, to re-insert
the jump, call trace code, restore the PC on the stack and, finally, exit. This
methodology was reasonably solid on a single processor and imposed no penalty
on performance for non-traced functions. On inspection, it obviously has a lot of
opportunity for failure on an SMP. Additionally, it will not work for re-entrant
functions. In fact there are so many opporunities for failure in this design that
it represents more of a curiousity than a working solution. Finally, at almost
100 instructions on the Power PC, the overhead for a traced function was quite
high.

27

Original function code

function entry

Function body

Function exit

Allocate Code Buffer

Copy Code

Modified function code

Jump to code buffer

Function body

Function exit

Code Buffer

Save return PC

save arg pointer

Restore function entry

Call trace function

Insert jump

Copy function entry code back

Run to the end and return to code buffer

Saved Stack pointer

Saved Arg pointer

Jump to function entry

Call trace code

RET to caller

Restore return PC

Restore arg pointer

Adjust return PC

Modified function code

Function entry

Function body

Function exit

Code Buffer

Save return PC

save arg pointer

Restore function entry

Call trace function

Restore JUMP

Saved Stack pointer

Saved Arg pointer

Jump to function entry

Call trace code

RET to caller

Restore return PC

Restore arg pointer

Adjust return PC

Figure 14: Flow for the rewriting version of devtrace

28

7.2 Data format

Our data format is text, not binary. We might be called to task on this question:
it is taken as given that binary data is always more efficient to transfer than
text, and our fixed format is maximally inefficient. Recall that our trace struct
is this:

struct Tracelog {
u64int ticks;
int info;
uintptr pc;
uintptr dat[5];

};
On an Opteron this struct is 64 bytes. Our inefficient text format is double

this, at 128 bytes. Realistically, however, we can shrink the text-based output
quite a bit if we abandon fixed-format records. Recall the the E format is:

E PC clock PID arg1 arg2 arg3 arg4
The PC can be printed as an offset from kernel code base, and hence limited

to 5 bytes. We will assume the clock remains 8 bytes. The PID can certainly be
less than 16 bytes, and can be as small as 4 bytes (PIDs in the range 0-9999).
The args are generally small, and could again be less than 4-5 bytes each. An
E record can, hence, be as small as 35 bytes – half the size of the binary!

The X record can be even shorter, as there is one return value to print, not
four args: X records could be under 20 bytes.

If we move to a non-fixed format record, we can conceivably increase the
bandwidth and efficiency of the data path as compared to binary. The question
of the relative convenience of the two formats remains an open question.

References

[1] Andrew McRae, Hardware profiling of kernels, or: How to look under the
hood while the engine is running.

[2] Satoshi Oshima, Djprobes status.

[3] Matthew J. Sottile and Ronald G. Minnich, Supermon: A high-speed cluster
monitoring system, CLUSTER ’02: Proceedings of the IEEE International
Conference on Cluster Computing (Washington, DC, USA), IEEE Computer
Society, 2002, p. 39.

29

