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1. Introduction

Semaphores are now more than 40 years old. Edsger W. Dijkstra described them in
EWD 74 [Dijkstra, 1965 (in Dutch)]. A semaphore is a non-negative integer with two
operations on it, P and V. The origin of the names P and Vis unclear. In EWD 74, Dijk-
stra calls semaphores seinpalen (Dutch for signalling posts) and associates V with
verhoog (increment/increase) and P with prolaag, a non-word resembling verlaag
(decrement/decrease). He continues, “Opm. 2. Vele seinpalen nemen slechts de
waarden 0 en 1 aan. In dat geval fungeert de V—operatie als ‘baanvak vrijgeven’; de P—
operatie, de tentatieve passering, kan slechts voltooid worden, als de betrokken seinpaal
(of seinpalen) op veilig staat en passering impliceert dan een op onveilig zetten.”
(““Remark 2. Many signals assume only the values 0 and 1. In that case the V-operation
functions as ‘release block’; the P-operation, the tentative passing, can only be
completed, if the signal (or signals) involved indicates clear, and passing then implies
setting it to stop.””) Thus, it may be that P and V were inspired by the railway terms
passeer (pass) and verlaat (leave).

We discard the railway terminology and use the language of locks: P is semacquire
and Vis semrelease. The C declarations are:

int semacquire(long *addr, int block);
long semrelease(long *addr, long count);

Semacquire waits for the semaphore value *addr to become positive and then decre-
ments it, returning 1; if the block flag is zero, semacquire returns 0 rather than wait. If
semacquire is interrupted, it returns -1. Semrelease increments the semaphore value by
the specified count.

Plan 9 [Pike et al., 1995] has traditionally used a different synchronization mecha-
nism, called rendezvous. Rendezvous is a symmetric mechanism; that is, it does not
assign different roles to the two processes involved. The first process to call ren-
dezvous will block until the second does. In contrast, semaphores are an asymmetric
mechanism: the process executing semacquire can block but the process executing
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semrelease is guaranteed not to. We added semaphores to Plan 9 to provide a way for a
real-time process to wake up another process without running the risk of blocking.
Since then, we have also used semaphores for efficient process wakeup and locking.

2. Hardware primitives

The implementations in this paper assume hardware support for atomic read-modify-
write operations on a single memory location. The fundamental operation is ‘“‘compare
and swap,”” which behaves like this C function cas, but executes atomically:

int
cas(long *addr, long old, long new)
{
/* Executes atomically. */
if(*addr '= old)
return O;
*addr = new;
return 1;
}

In one atomic operation, cas checks whether the value *addr is equal to old and, if so,
changes it to new. It returns a flag telling whether it changed *addr.

Of course, cas is not implemented in C. Instead, we must implement it using spe-
cial hardware instructions. All modern processors provide a way to implement compare
and swap. The x86 architecture (since the 486) provides a direct compare and swap
instruction, CMPXCHG. Other processors—including the Alpha, ARM, MIPS, and
PowerPC—provide a pair of instructions called load linked (LL) and store conditional (sC).
The LL instruction reads from a memory location, and SC writes to a memory location
only if (1) it was the memory location used in the last LL instruction, and (2) that location
has not been changed since the LL. On those systems, compare and swap can be imple-
mented in terms of LL and scC.

The implementations also use an atomic addition operation xadd that atomically
adds to a value in memory, returning the new value. We don’t need additional hardware
support for xadd, since it can be implemented using cas:

long
xadd(long *addr, long delta)

{

long v;

for(;;){
v = *addr;
if(cas(addr, v, v+delta))
return v+delta;

3. User-space semaphores

We implemented semacquire and semrelease as kernel-provided system calls. For
efficiency, it is useful to have a semaphore implementation that, if there is no con-
tention, can run entirely in user space, only falling back on the kernel to handle con-
tention. Figure 1 gives the implementation. The user space semaphore, a Usem, con-
sists of a user-level semaphore value u and a kernel value k:

54



typedef struct Usem Usem;
struct Usem {

long u;

long k;
};

When u is non-negative, it represents the actual semaphore value. When u is negative,
the semaphore has value zero: acquirers must wait on the kernel semaphore k and
releasers must wake them up.

void

usemacquire(Usem *s)

{

if(xadd(&s—>u, -1) < 0)
while(semacquire(&s—>k, 1) < 0){
/* Interrupted, retry */

}

¥

void

usemrelease(Usem *s)

{

if(xadd(&s—>u, 1) <= 0)

semrelease(&s—>k, 1);

¥

If the semaphore is uncontended, the xadd in usemacquire will return a non-negative
value, avoiding the kernel call. Similarly, the xadd in usemrelease will return a positive
value, also avoiding the kernel call.

4. Thread Scheduling

In the Plan 9 thread library, a program is made up of a collection of processes sharing
memory. A thread is a coroutine assigned to a particular process. Within a process,
threads schedule cooperatively. Each process manages the threads assigned to it, and
the process schedulers run almost independently. The one exception is that a thread in
one process might go to sleep (for example, waiting on a channel operation) and be
woken up by a thread in a different process. The two processes need a way to coordi-
nate, so that if the first has no runnable threads, it can go to sleep in the kernel, and
then the second process can wake it up.

The standard Plan 9 thread library uses rendezvous to coordinate between pro-
cesses. The processes share access to each other’s scheduling queues: one process is
manipulating another’s run queue. The processes must also share a flag protected by a
spin lock to coordinate, so that either both processes decide to call rendezvous or nei-
ther does.

For the real-time thread library, we wanted to remove as many sources of blocking
as possible, including these locks. We replaced the locked run queue with a non-
blocking array-based implementation of a producer/consumer queue. That implemen-
tation is beyond the scope of this paper. After making that change, the only lock
remaining in the scheduler was the one protecting the “whether to rendezvous’ flag.
To eliminate that one, we replaced the rendezvous with a user-space semaphore count-
ing the number of threads on the queue.
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To wait for a thread to run, the process’s scheduler decrements the semaphore. If
the run queue is empty, the usemacquire will block until it is not. Having done so, it is
guaranteed that there is a thread on the run queue:

// Get next thread to run
static Thread*
runthread(void)

{

Proc *p;

p = thisproc();

usemacquire (&p—->nready) ;

return qget(&p—>ready);
}

Similarly, to wake up a thread (even one in another process), it suffices to add the
thread to its process’s run queue and then increment the semaphore:
// Wake up thread t to run in its process.

static void
wakeup(Thread *t)

{
Proc *p;
p = t—>p;
gput (&p—>ready, t);
usemrelease(&p—>nready) ;
}

This implementation removes the need for the flag and the lock; more importantly, the
process executing threadwakeup is guaranteed never to block, because it executes
usemrelease, not usemacquire.

5. Replacing spin locks

The Plan 9 user-level Lock implementation is an adapted version of the one used in
the kernel. A lock is represented by an integer value: 0 is unlocked, non-zero is locked.
A process tries to grab the lock by using a test-and-set instruction to check whether the
value is 0 and, if so, set it to a non-zero value. If the lock is unavailable, the process
loops, trying repeatedly. In a multiprocessor kernel, this is a fine lock implementation:
the lock is held by another processor, which will unlock it soon. In user space, this
implementation has bad interactions with the scheduler: if the lock is held by another
process that has been preempted, spinning for the lock will not accomplish anything.
The user-level lock implementation addresses this by rescheduling itself (with sleep(0))
between attempts after the first thousand unsuccessful attempts. Eventually it backs off
more, sleeping for milliseconds at a time between lock attempts.

We replaced these spin locks with a semaphore-based implementation. Using
semaphores allows the process to tell the kernel exactly what it is waiting for, avoiding
bad interactions with the scheduler like the one above. The semaphore-based imple-
mentation represents a lock as two values, a user-level key and a kernel semaphore:

struct Lock

{
long key;
long sem;

};
The key counts the number of processes interested in holding the lock, including the
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one that does hold it. Thus if key is 0, the lock is unlocked. If key is 1, the lock is held.
If key is larger than 1, the lock is held by one process and there are key-1 processes
waiting to acquire it. Those processes wait on the semaphore sem.

void
lock(Lock *1)
{
if(xadd(&l—>key, 1) == 1)

return; // changed from 0 —> 1: we hold lock
// otherwise wait in kernel
while(semacquire(&l->sem, 1) < 0){

/* interrupted; try again */

}
}
void
unlock(Lock *1)
{
if(xadd(&l->key, —-1) == 0)
return; // changed from 1 -> 0: no contention
semrelease(&l—->sem, 1);
}

Like the user-level semaphore implementation described above, the lock implementa-
tion handles the uncontended case without needing to enter the kernel.

The one significant difference between the user-level semaphores above and the
semaphore-based locks described here is the interpretation of the user-space value.
Plan 9 convention requires that a zeroed Lock structure be an unlocked lock. In con-
trast, a zeroed Usem structure is analogous to a locked lock: a usemacquire on a zeroed
Usem will block.

6. Kernel Implementation of Semaphores

Inside the Plan 9 kernel, there are two kinds of locks: the spin lock Lock spins until
the lock is available, and the queuing lock QLock reschedules the current process until
the lock is available. Because accessing user memory might cause a lengthy page fault,
the kernel does not allow a process to hold a Lock while accessing user memory. Since
the semaphore is stored in user memory, then, the obvious implementation is to acquire
a QLock, perform the semaphore operations, and then release it. Unfortunately, this
implementation could cause semrelease to reschedule while acquiring the QLock, negat-
ing the main benefit of semaphores for real-time processes. A more complex imple-
mentation is needed. This section documents the implementation. It is not necessary
to understand the rest of the paper and can be skipped on first reading.

Each semacquire call records its parameters in a Sema data structure and adds it to
a list of active calls associated with a particular Segment (a shared memory region). The
Sema structure contains a kernel Rendez for use by sleep and wakeup (see [Pike et al.,
1991]), the address, and a waiting flag:
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struct Sema

{
Rendez;
long *addr;
int waiting;
Sema *next;
Sema *prev;

}s

The list is protected by a Lock, which cannot cause the process to reschedule. The
semaphore value *addr is stored in user memory. Thus, we can access the list only
when holding the lock and we can access the semaphore value only when not holding
the lock. The helper functions

void semqueue (Segment *s, long *addr, Sema *p);
void semdequeue(Segment *s, long *addr, Sema *p);
void semwakeup(Segment *s, long *addr, int n);

all manipulate the segment’s list of Sema structures. They acquire the associated Lock,
perform their operations, and release the lock before returning. Semqueue and
semdequeue add p to or remove p from the list. Semwakeup walks the list looking for n
Sema structures with p.waiting set. It clears p.waiting and then wakes up the corre-
sponding process.

Using those helper functions, the basic implementation of semacquire and
semrelease is:

int

semacquire(Segment *s, long *addr)

{

Sema phore;

semqueue(s, addr, &phore);
for(;;){

phore.waiting = 1;

if(canacquire(addr))

break;

sleep(&phore, semawoke);
}
semdequeue(s, &phore);
semwakeup(s, addr, 1);
return 1;

}
long
semrelease(Segment *s, long *addr, long n)
{
long v;
v = xadd(addr, n);
semwakeup(s, addr, n);
return v;
}

(This version omits the details associated with returning -1 when interrupted and also
with non-blocking calls.)

Semacquire adds a Sema to the segment’s list and sets phore.waiting. Then it
attempts to acquire the semaphore. If it is unsuccessful, it goes to sleep. To avoid
missed wakeups, sleep calls semawoke before committing to sleeping; semawoke simply

58



checks phore.waiting. Eventually, canacquire returns true, breaking out of the loop.
Then semacquire removes its Sema from the list and returns.

The call to semwakeup at the end of semacquire corrects a subtle race that we
found using Spin. Suppose process A calls semacquire and the semaphore has value 1.
Semacquire queues its Sema and sets phore.waiting, canacquire succeeds (the sema-
phore value is now 0), and semacquire breaks out of the loop. Then process B calls
semacquire: it adds itself to the list, fails to acquire the semaphore (the value is 0), and
goes to sleep. Now process C calls semrelease: it increments the semaphore (the value
is now 1) and looks for a single Sema in the list to wake up. It finds A’s, checks that
phore.waiting is set, and then calls the kernel wakeup to wake A. Unfortunately, A
never went to sleep. The wakeup is lost on A, which had already acquired the sema-
phore. If A simply removed its Sema from the list and returned, the semaphore value
would be 1 with B still asleep. To account for the possibly lost wakeup, A must trigger
one extra semwakeup as it returns. This avoids the race, at the cost of an unnecessary
(but harmless) wakeup when the race has not happened.

7. Performance

To measure the cost of semaphore synchronization, we wrote a program in which two
processes ping-pong between two semaphores:

Process 1 blocks on the acquisition of Semaphore 1,
Process 2 releases Semaphore 1 and blocks on Semaphore 2,
Process 1 releases Semaphore 2 and blocks on Semaphore 1,

This loop executes a million times. We also timed a program that does two million
acquires and two million releases on a semaphore initialized to two million, so that none
of the calls would block. In both cases, there were a total of four million system calls;
the ping-pong case adds two million context switches. Table 1 gives the results.

time per system call (microseconds)

processor cpus ping—-pong semacquire semrelease
Pentiumlll/Xeon, 598 MHz 1 2.18 1.35 1.91
Pentiumlll/Xeon, 797 MHz 2 0.887 0.949 1.38
PentiumlV/Xeon, 2196 MHz 4 0.970 1.38 1.84
AMDG64, 2201 MHz 2 1.08 0.266 0.326

Table 1 Semaphore system call performance.

time per lock operation (microseconds)

processor cpus  spin locks semaphore locks
Pentiumlll/Xeon, 598 MHz 1 5.4 5.4
Pentiumlll/Xeon, 797 MHz 2 18.2 5.6
AMDG64, 2201 MHz 2 22.6 2.5
PentiumlV/Xeon, 2196 MHz 4 43.8 4.9

Table 2 Performance of spin locks versus semaphore locks.

Next, we looked at lock performance, comparing the conventional Plan 9 locks
from libc to the new ones using semaphores for sleep and wakeup. We ran Doug
Mcllroy’s power series program [Mcllroy, 1990], which spends almost all its time in
channel communication. The Plan 9 thread library’s channel implementation uses a
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single global lock to coordinate all channel activity, inducing a large amount of lock con-
tention. The application creates a thousand processes and makes 207,631 lock calls.
The number of locks (in the semaphore version) that require waiting (i.e., a semacquire
is done) varies wildly. In 20 runs, the smallest number we saw was 127, the largest was
490, and the average was 288.

Table 2 shows the performance results. Surprisingly, the performance difference
was most pronounced on multiprocessors. Naively, one would expect that spinning
would have some benefit on multiprocessors whereas it could have no benefit on
uniprocessors, but it turns out that spinning without rescheduling (the first 1000 tries)
has no effect on performance. Contention only occurs some 500 or so times, and the
time it takes to spin 500,000 times is in the noise. The difference between uniproces-
sors and multiprocessors here is that on uniprocessors, the first sleep(0) will put the
process waiting for the lock at the back of the ready queue so that, by the time it is
scheduled again, the lock will likely be available. On multiprocesssors, contention from
other processes running simultaneously makes yielding less effective. It is also likely
that the repeated atomic read-modify-write instructions, as in the tight loop of the spin
lock, can slow the entire multiprocessor.

The performance of the semaphore-based lock implementation is sometimes much
better, and never noticeably worse, than the spin locks. We will replace the spin lock
implementation in the Plan 9 distribution soon.

8. Comparison with other approaches

Any operating system with cooperating processes must provide an interprocess
synchronization mechanism. It is instructive to contrast the semaphores described here
with mechanisms in other systems.

Many systems—for example, BSD, Mach, OS X, and even System V UNIX—provide
semaphores [Bach, 1986]. In all those systems, semaphores must be explicitly allocated
and deallocated, making them more cumbersome to use than semacquire and
semrelease. Worse, semaphores in those systems occupy a global id space, so that it is
possible to run the system out of semaphores just by running programs that allocate
semaphores but neglect to deallocate them (or crash). The Plan 9 semaphores identify
semaphores by a shared memory location: two processes are talking about the same
semaphore if *addr is the same word of physical memory in both. Further, there is no
kernel-resident semaphore state except when semacquire is blocking. This makes the
semaphore leaks of System V impossible.

Linux provides a lower-level system call named futex [Franke and Russell, 2002].
Futex is essentially ‘““‘compare and sleep,” making it a good match for compare and
swap-based algorithms. Futex also matches processes based on shared physical mem-
ory, avoiding the System V leak problem. Because futex only provides ‘‘compare and
sleep’” and ““‘wakeup,” futex-based algorithms are required to handle the uncontended
cases in user space, like our user-level semaphore and new lock implementations do.
This makes futex-based implementations efficient; unfortunately, they are also quite
subtle. The original example code distributed with futexes was wrong; a correct version
was only published a year later [Drepper, 2003]. In contrast, semaphores are less gen-
eral but easier to understand and to use correctly.
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