

Proceedings of
3rd International Workshop on Plan 9

October 30-31, 2008

Computer and Communication Engineering Department
University of Thessaly

Volos, Greece

Organization

Organizing Committee

Spyros Lalis, University of Thessaly
Manos Koutsoumpelias, University of Thessaly
Francisco Ballesteros, Universidad Rey Juan Carlos de Madrid
Sape Mullender, Bell Labs, Alcatel-Lucent

Program Committee

Richard Miller (chair), Miller Research Ltd.
Peter Bosch, Bell Labs, Alcatel-Lucent
Geoff Collyer, Bell Labs, Alcatel-Lucent
Latchesar Ionkov, Los Alamos National Laboratory
Paul Lalonde, Intel Corp.
Eric Nichols, Nara Institute of Science and Technology
Brantley Coile, Coraid Inc.
Charles Forsyth, Vita Nuova Ltd.

Table of Contents

Glendix: A Plan9/Linux Distribution
Anant Narayanan, Shantanu Choudhary, Vinay Pamarthi and Manoj Gaur..1

Upperware: Pushing the Applications Back Into the System
Gorka Guardiola, Francisco J. Ballesteros and Enrique Soriano..9

Scaling Upas
Erik Quanstrom..19

Vidi: A Venti To Go
Latchesar Ionkov..25

Inferno DS : Inferno port to the Nintendo DS
Salva Peiro...31

9P For Embedded Devices
Bruce Ellis and Tiger Ellis...39

Mrph: A Morphological Analyzer
Noah Evans..43

Semaphores in Plan 9
Sape Mullender and Russ Cox...53

v9fb: A Remote Framebuffer Infrastructure for Linux
Abhishek Kulkarni and Latchesar Ionkov..63

Glendix: A Plan9/Linux Distribution

Anant Narayanan
Shantanu Choudhary

Vinay K. Pamarthi
Manoj S. Gaur

!"#"$%&"'(")%*+"#',+-)%).)/'*0'1/23+*#*4&5'6"%7.85',+9%"

:;<1=:>1

?/ 9/-28%@/ *.8 "778*"23 *0 @8%+4%+4)3/ A#"+ B .-/8-7"2/)*)3/ C%+.D
E/8+/# %+ *89/8)* -78/"9)3/ .-/ *0 A#"+ B)**#- "F*+4-))3/ C%+.D'9/$/#G
*7/8'2*FF.+%)&H

1. Introduction

I(JKC%+.D %- " 7*7.#"8 08// *7/8")%+4 -&-)/F %+ .-/)*9"&H I(JKC%+.D -)8%$/-)*
@/ -)8%2)#& 2*F7#%"+) L%)3 AM<,N -)"+9"89-5 "+9 %-)3.-)%/9 9*L+ L%)3 -/$/8"# 8/O.%8/G
F/+)- "+9)3/8/@& 2/"-/-)* @/ %++*$")%$/ "- 0"8 "- *7/8")%+4 -&-)/F 9/-%4+ %- 2*+G
2/8+/9H A#"+ B PQR5 *+)3/ *)3/8 3"+95 L"- 9/-%4+/9)* @/ " 08*FS-28")23 -.22/--*8)*
J(,NH 13/ A#"+ B *7/8")%+4 -&-)/F *00/8- -/$/8"# +/L 0/").8/-)3") "8/ $/8& 2*F7/##%+4
)*'"'9/$/#*7/8'%+')*9"&!-'/8"'*0'*0'7/8-*+"#'2*F7.)%+4H

13/ A#"+ B E/8+/#5 3*L/$/85 -.77*8)- *+#& " @"8/ F%+%F.F *0 3"89L"8/H 13") %- *+/ *0
)3/ 78%F"8& 8/"-*+- *0 %)- .+7*7.#"8%)& 0*8 9"&S)*S9"& .-/H 13/ C%+.D E/8+/#5 *+)3/
*)3/8 3"+95 3"- 3"9 &/"8- *0 9/$/#*7F/+) @/3%+9 %)5 "+9 /+T*&-)3/ -.77*8) *0 -/$/8"#
3"89L"8/'2*F7*+/+)-'"+9'9/$/#*7/8-'"#%E/H

?/ 78*7*-/ I#/+9%D5 " 4/+/8"# 7.87*-/ *7/8")%+4 -&-)/F)3") "%F-)* 2*F@%+/)3/
A#"+ B .-/8-7"2/ L%)3)3/ C%+.D E/8+/#5)* *00/8)*9"&!- 9/$/#*7/8 "+ /D2%)%+4 /+$%8*+G
F/+)'0*8'"77#%2")%*+'9/$/#*7F/+)'*+'7/8-*+"#'2*F7.)/8-'"+9'/F@/99/9'-&-)/F-'"#%E/H

13/ 78%F"8& F*)%$")%+4 0"2)*8 3/8/ %-)* 78*F*)/)3/ A#"+ B -)&#/ *0 "77#%2")%*+ 9/$/#*7G
F/+))*)3/ #"84/ @"-/ *0 9/$/#*7/8-)3") C%+.D "#8/"9& 3"-H : -/2*+9"8& 0"2)*8 %-)*
/#%F%+")/)3/ +//9 0*8 GNU PUR @"-/9 .-/8-7"2/ -*0)L"8/5 @& 8/7#"2%+4)3/F L%)3)3/%8
#%43)L/%43) A#"+ B 2*.+)/87"8)-5 L3%23 "8/ T.-) "- 0.+2)%*+"# "+9 7*8)"@#/H 13/ 8/-.#)%+4
9%-)8%@.)%*+'L*.#9'@/'"'#%43)L/%43)'C%+.D'@"-/9'*7/8")%+4'-&-)/FH

,+)3%- 7"7/85 L/ 9/-28%@/)3/ "778*"23)"E/+ @& .-)* 28/")/ I#/+9%DH ?/ @/4%+
L%)3 " 8/$%/L *0)3/ 9%00/8/+) "778*"23/- 7*--%@#/5 "+9)3/+ 9/-28%@/)3/ 23*-/+
F/)3*9*#*4&5 "#*+4 L%)3 -%4+%0%2"+) 23"##/+4/- "+9 3*L L/ *$/82"F/)3/FH ?/ 2*+G
2#.9/'L%)3'"'-.FF"8&'*0'L3")'3"-'@//+'9*+/'-*'0"8'"+9'"'0/L'+*)/-'*+'0.).8/'L*8EH

2. Review

V8*F " @8*"9 7/8-7/2)%$/5)3/8/ "8/)L* E%+9- *0 2*F7")%@%#%)& L/ 2"+ 28/")/ @/)L//+
78*48"F- *+ A#"+ B "+9 C%+.DH ,+)3%- -/2)%*+5 L/ 9%-2.-- -*.82/ "+9 @%+"8& 2*F7")%@%#G
%)&5'"+9'L3")')3/&'F/"+'%+')3/'2*+)/D)'*0'I#/+9%DH

{anant@kix.in,choudhary.shantanu@gmail.com,pamarthi.vinay@gmail.com,msgaur@mnit.ac.in}

1

2.1. Source compatibility

WA#"+'B'08*F'J-/8'<7"2/W'X"#-*'E+*L+'"- plan9port) PYR'%-'"+'/D%-)%+4'-*0)L"8/'7"2EG
"4/ 0*8 AM<,N 2*F7#%"+) *7/8")%+4 -&-)/F-)3") 2*+-%-)- *0 7*8)- *0 -/$/8"# A#"+ B "77#%G
2")%*+-H ?3%#/ F*-) *0 A#"+ B!- #%@8"8%/- 3"$/ "#-* @//+ 7*8)/95)3/ -*#.)%*+ %- +*) 2*FG
7#/)/#& 7/80/2)H V*8 /D"F7#/5)"E%+4)3/ -*.82/ 0*8 " A#"+ B 78*48"F "+9 8/2*F7%#%+4 %)
.-%+4 plan9port F"&'+*)'8/-.#)'%+'2*88/2)#&'L*8E%+4'@%+"8%/-'"##')3/')%F/H

M+/ *0)3/ "778*"23/- L/ 8/$%/L/9 /"8#& *+ 9.8%+4)3/ 78*T/2) L"- $/8& -%F%#"8)*
plan9port. 13/ F*-) -%4+%0%2"+) "9$"+)"4/ 0*8)3%- "778*"23 %-)3") A#"+ B "77#%2")%*+-
2"+'@/'8.+'*+'"'$"8%/)&'*0'J(,N'2#*+/-'X+*)'T.-)'C%+.DZ'"0)/8'"'8/2*F7%#/H

[*L/$/85)3%- L*.#9 8/O.%8/ .-)* L8%)/ AM<,N /O.%$"#/+)- *0 "##)3/ A#"+ B #%@8"8%/-5
L3%23 -//F/9 #%E/ " -)/7 @"2EL"89H 13/ "99%)%*+"# 2*+-)8"%+) *0 3"$%+4)* 8/2*F7%#/)3/
78*48"F 0*8 /"23)"84/) /+$%8*+F/+) L"- +*) $/8& "77/"#%+4 XL3") %0)3/ -*.82/- L/8/
+*)'"$"%#"@#/\Z5'"+9')3.-'L/'23*-/')*'8/T/2)')3%-'"778*"23H

2.2. Binary compatibility

: F*8/ "77/"#%+4 -*#.)%*+ L"-)* "23%/$/ @%+"8&S#/$/# 2*F7")%@%#%)& *0 "## A#"+ B
"77#%2")%*+-H 13/ F"+)8" 3/8/ L"- compile−once−execute−everywhere. ?/ L"+)/9)*
/+-.8/)3") %) L*.#9+!) F"))/8 L3/8/)3/ 78*48"F L"- 2*F7%#/95 %) -3*.#9 8.+ "-
/D7/2)/9'*+'@*)3'A#"+'B'"+9'C%+.DH

?3%#/')3%- "778*"23 -//F- %9/"#5)3/ C%+.D E/8+/# 78*$%9/-)3/ 2"7"@%#%)&)* -.77*8) +/L
@%+"8& 0*8F")-5 -.23 "- A#"+ B!- a.out. ,+ *89/8 0*8)3%- "778*"23)* L*8E5 L/ 3"$/)*
F"E/ C%+.D @/3"$/ /D"2)#& "- " A#"+ B E/8+/# L*.#95 "- 0"8 "- "77#%2")%*+- "8/ 2*+G
2/8+/9H 13/8/ "8/)L* 78%F"8& 23"++/#- 0*8 "+ "77#%2")%*+)* "22/-- 0.+2)%*+"#%)& 78*G
$%9/9 @&)3/ A#"+ B E/8+/#] -&-)/F 2"##- "+9 0%#/ -/8$/8-H ,0 L/ L/8/)* 78*$%9/ -.%)"@#/
%F7#/F/+)")%*+- *0 @*)3 %+)3/ C%+.D E/8+/#5 .-/8-7"2/ "77#%2")%*+- -3*.#9 @/ *@#%$%*.-
)*)3/ 0"2))3"))3/ .+9/8#&%+4 E/8+/# %- C%+.D "+9 +*) A#"+ B5 L3%23 %- /D"2)#& L3") L/
L"+)H

?/ 9/2%9/9)* "9*7))3%- "778*"23 @/2".-/ %) L"- %+)/8/-)%+4 "+9 -//F/9)*
"23%/$/'*.8'-)")/9'4*"#-'%+'"'2#/"+'F"++/8H

3. Methodology

,+)3%- -/2)%*+ L/ 9%-2.--)3/ %F7#/F/+)")%*+ 9/)"%#- *0 "+ a.out @%+"8& #*"9/8 0*8
C%+.D'"+9'A#"+'B'-)&#/'-&-)/F'2"##'3"+9#%+4H

3.1. Loader

?/ L%## +*) 9/-28%@/)3/ -)8.2).8/ *0 " A#"+ B /D/2.)"@#/5 L3%23 %- "#8/"9& 9*2.G
F/+)/9 P^R %+ a.outX_ZH C%+.D "#8/"9& -.77*8)- " $"8%/)& *0 /D/2.)"@#/- S 8"+4%+4 08*F
`CV'X)3/'+")%$/'C%+.D'/D/2.)"@#/'0*8F")Z')*'>MVVH [/+2/5')3/'0*.+9")%*+'0*8'"99%+4'-.7G
7*8) 0*8 " +/L /D/2.)"@#/ 0*8F") 3"9 "#8/"9& @//+ #"%95 L/ -%F7#& 3"9)* .-/)3/)**#-
)3")')3/'E/8+/#'*00/8/9'.-H

M+/ *0)3/ 8*#/-)3") E/8+/# F*9.#/- 2"+ "22*F7#%-3 %- "99%+4 +/L @%+"8& 0*8F")-)* "
8.++%+4 -&-)/F5 -* L/ 23*-/)* L8%)/ " E/8+/# F*9.#/ 0*8)3/ A#"+ B /D/2.)"@#/ 0*8F")H
13/ -%+4#/ @%44/-) "9$"+)"4/ *0 L8%)%+4 " E/8+/# F*9.#/ 0*8)3%- 7.87*-/ %-)3") L/
9%9+!) 3"$/)* 8/2*F7%#/)3/ E/8+/# "+9 8/@**) /$/8&)%F/ L/ F"9/ " 23"+4/)*)3/
#*"9/8'S')3"+E-')*'C%+.D!-'9&+"F%2'F*9.#/'#*"9%+4K.+#*"9%+4'0"2%#%)%/-H

C/)!-)"E/ " #**E ") 3*L)3/ exec -&-)/F 2"## %- %F7#/F/+)/9 %+ C%+.D5 @/2".-/)3")
%- 2/+)8"#)* *.8 *@T/2)%$/H 13/ /+)8& 7*%+) *0 exec #%$/- %+)3/ "823%)/2).8/S9/7/+9/+)
)8//'*0')3/'-*.82/'0%#/-5'@.)'"##')3/'%+)/8/-)%+4'2*9/'%-'7"8)'*0 fs/exec.c. 13/')*7#/$/#
0.+2)%*+5 do_execve(), 7/80*8F- -*F/ @"-%2 /88*8 23/2E%+45 0%##-)3/ W@%+"8& 7"8"FG
/)/8W -)8.2).8/ linux_binprm "+9 #**E- 0*8 " -.%)"@#/ @%+"8& 3"+9#/8H 13/ #"-) -)/7 %-
7/80*8F/9 @& " -/7/8")/ 0.+2)%*+ search_binary_handler(), 13/ 0.+2)%*+ 0%+9-

2

)3/ "778*78%")/ @%+"8& 3"+9#/8 @& -2"++%+4 " #%-) *0 8/4%-)/8/9 @%+"8& 0*8F")-5 "+9 7"--G
%+4)3/ binprm -)8.2).8/)* "## *0)3/F .+)%# *+/ -.22//9-H ,0 +* 3"+9#/8 %- "@#/)*
9/"#'L%)3')3/'/D/2.)"@#/'0%#/5')3/'-&-)/F'2"##'8/).8+-')3/ ENOEXEC /88*8'2*9/H

C%+.D %- "#-* 2*F7")%@#/ L%)3)3/ -)"+9"89 J+%D @/3"$%*8 *0 -.77*8)%+4 /D/2)."@#/)/D)
0%#/-)3") @/4%+ L%)3 #!. <.23 0%#/- "8/ /D/2.)/9 L%)3)3/ 3/#7 *0 "+ %+)/78/)/8 L3%23 %-
-7/2%0%/9 %FF/9%")/#& "0)/8)3/ #! -&F@*#H V*8)3%- 7.87*-/5 " @%+"8& 0*8F") -7/2%"#%a/9
%+ 8.++%+4 %+)/878/)/8 0%#/- (fs/binfmt_script.c) 5 %- %+2#.9/9H 13/ 0.+2)%*+ %-
9/-%4+/9)* @/ 8//+)8"+)5 "+9 binfmt_script 23/2E- "4"%+-) 9*.@#/ %+$*2")%*+H 13/
"@%#%)&)* %+$*E/ "+ %+)/78/)/8 %+ " @%+"8& 0*8F") 3"+9#/8 3/#7- .- 48/")#&5 "- L/ -3"##
-//'#")/8H

3.2. Binary format handling

:- F/+)%*+/9 @/0*8/5 C%+.D *00/8-)3/ "@%#%)&)* 8/4%-)/8 +/L @%+"8& 0*8F")- ") 8.+G
)%F/H 13/ %F7#/F/+)")%*+ %- O.%)/ -)8"%43)0*8L"895 "#)3*.43 %) %+$*#$/- L*8E%+4 L%)3
8")3/8 /#"@*8")/ 9")" -)8.2).8/- S /%)3/8)3/ 2*9/ *8)3/ 9")" -)8.2).8/- F.-) "22*FF*G
9")/)3/ .+9/8#&%+4 2*F7#/D%)%/-b /#"@*8")/ 9")" -)8.2).8/- *00/8 F*8/ 0#/D%@%#%)&)3"+
/#"@*8")/'2*9/H

13/ 2*8/ *0 " @%+"8& 0*8F") %- 8/78/-/+)/9 %+)3/ E/8+/# @& " -)8.2).8/ 2"##/9
linux_binfmt, L3%23'%-'9/2#"8/9'%+')3/ linux/binfmts.h 0%#/]

struct linux_binfmt {
struct linux_binfmt *next;
long *use_count;
int (*load_binary)(struct linux_binprm *, struct pt_regs *);
int (*load_shlib)(int fd);
int (*core_dump)(long signr, struct pt_regs *);

};

13/)38// F/)3*9- 9/2#"8/9 @&)3/ @%+"8& 0*8F") "8/ .-/9)* /D/2.)/ " 78*48"F
0%#/5)* #*"9 " -3"8/9 #%@8"8& "+9 4/+/8")/ " 2*8/ 9.F75 8/-7/2)%$/#&H 13/ next 7*%+)/8
%- .-/9 @& search_binary_handler(), L3%#/)3/ use_count 7*%+)/8 E//7-
)8"2E *0)3/ .-"4/ 2*.+) *0 F*9.#/-H ?3/+/$/8 " 78*2/-- p %- /D/2.)%+4 %+)3/ 8/"#F *0
" F*9.#"8%a/9 @%+"8& 0*8F")5)3/ E/8+/# E//7-)8"2E *0 use_count)* 78/$/+) .+/DG
7/2)/9'8/F*$"#'*0')3/'F*9.#/H

M0)3/)38// F/)3*9-5 L/ *+#& +//9)* %F7#/F/+) load_binary. load_shlib %-
+*) 8/O.%8/9 "- "## A#"+ B @%+"8%/- "- -)")%2"##& #%+E/95 "+9 core_dump %- F"%+#& .-/9
)*'4/+/8")/'2*8/'9.F7-'8/"9"@#/'@&')3/'I(J'9/@.44/8'XL3%23'L/'9*'+*)'L"+)')*'.-/ZH

13/ @%+"8& 0*8F") 3"+9#/8 8/2/%$/-)L* %F7*8)"+) 7"8"F/)/8- @&)3/ E/8+/#H 13/
0%8-) 2*+)"%+- " 9/-28%7)%*+ *0)3/ @%+"8& 0%#/ "+9)3/'-/2*+9'%-'"'7*%+)/8')*')3/'78*2/--*8
8/4%-)/8-H 13/ 0%8-) "84.F/+)5 " linux_binprm -)8.2).8/5 2*+)"%+-5 %+ "99%)%*+)*
*)3/8 0%/#9-5)3/ 0%8-) QUc @&)/- *0)3/ @%+"8& 0%#/ XL3%23 /+"@#/ .-)* O.%2E#& 23/2E)3/
magic +.F@/85 "+9 9/2%9/ %0 L/ L"+))* /D/2.)/)3%- @%+"8& *8 +*)ZH ?/ "#-* 4/)
"998/--/- *0)3/ 9")" 7"4/- .-/9)* 2"88& "8*.+9)3/ /+$%8*+F/+) "+9 "84.F/+) #%-) 0*8
)3/'+/L'78*48"FH

3.3. Memory layout and padding

M+2/ L/!$/ 2*+0%8F/9)3"))3/ 4%$/+ /D/2.)"@#/ %- %+9//9 "+ a.out 0%#/5 L/ @/4%+)*
#*"9 %)- 2*+)/+)- %+)* F/F*8&H 13/ #"&*.) %+ F/F*8& %- 9/-28%@/9 %+ 9/)"%# %+ a.outX_Z
@.))"E/ +*)/ *0)3/ 0"2))3"))3/ %+SF/F*8& 8/78/-/+)")%*+ *0 " @%+"8& 9*/- not F")23
L%)3)3") *0)3/ 2*+)/+)- *0)3/ 0%#/H 13/8/ %- " 4"7 @/)L//+)3/ TEXT "+9 DATA -/2G
)%*+- %+ F/F*8&5 @/2".-/ *0 7"4/S"#%4+F/+)H ,+)3/ /D/2.)"@#/ 0%#/5 3*L/$/85 "## -/2G
)%*+- "8/ *+/ "0)/8)3/ *)3/85 -* L3%#/ 2*7&%+4)3/ 2*+)/+)- %+)* F/F*8& L/ +//9)* 28/G
")/')3%-'/D)8"'7"99%+4H

13%- L"- *.8 0%8-) F"T*8 23"##/+4/H ?/ +*)%2/9)3") "## *0)3/ @%+"8& 0*8F")- C%+.D

3

-.77*8)-5 "2)."##& 9* 2*+)"%+)3/ 7"99%+4 %+)3/ 0%#/ %)-/#05 "+9)3/8/0*8/5 "##)3/%8 3"+G
9#/8- .-/)3/ X%+Z0"F*.- mmap() 2"##)* 9%8/2)#& F"7)3/ 0%#/)* F/F*8&H ?/ 2"++*) .-/
)3") "778*"23 @/2".-/ mmap() 9*/- +*) L*8E *+ +*+ 7"4/S"#%4+/9 *00-/)-5 "+9)3/
DATA -/2)%*+'%-'@*.+9')*'@/'")'-.23'"+'"998/--'%+')3/'0%#/H

:- " L*8E"8*.+95 L/ .-/ C%+.D!- %+)/878/)/8 2"7"@%#%)%/- X9%-2.--/9 /"8#%/8Z)*
%+$*E/ " .-/8-7"2/ 78*48"F L3/+/$/8 "+ ".)3/+)%2 "H*.) /D/2.)"@#/ %- 0*.+9H 13%- .-/8G
-7"2/ 78*48"F 28/")/-)3%- /D)8" 7"99%+4 %+)3/ 0%#/ %)-/#05 L3%23 F"&)3/+ @/ F/F*8&S
F"77/9H 13%- 7"99%+4 78*48"F "#-*).8+/9 *.))* @/ /D)8/F/#& .-/0.# %+ #")/8 -)"4/- *0
)3/'78*T/2)5'"-'L%##'@/'9%-2.--/9'%+')3/'+/D)'-/2)%*+H

3.4. Top of Stack

13/ -)")/F/+))3") -&-)/F 2"##- "8/)3/ *+#& L"& 0*8 A#"+ B .-/8-7"2/ "77#%2")%*+-
)* %+)/8"2) L%)3)3/ E/8+/# %- +*) /+)%8/#&)8./H 13/ A#"+ B E/8+/# %+%)%"#%a/- "+9 F"%+)"%+-
" -7/2%"# -)8.2).8/ 2"##/9 Tos, L3%23 %- "#-* .-/9)* /D23"+4/ 9")" @/)L//+)3/ E/8+/#
"+9'.-/8-7"2/]

struct Tos {
struct /* Per process profiling */
{

Plink *pp; /* known to be 0(ptr) */
Plink *next; /* known to be 4(ptr) */
Plink *last;
Plink *first;
ulong pid;
ulong what;

} prof;
uvlong cyclefreq;
vlong kcycles;
vlong pcycles;
ulong pid;
ulong clock;
/* top of stack is here */

};

:- &*. 2"+ -//5)3/8/ "8/ -/$/8"# 0%/#9- %F7*8)"+) 0*8 78*2/-- 78*0%#%+45 L3%23 +//9
)* F"9/ "$"%#"@#/ L3/+ " @%+"8& %+ /D/2.)/9H 13/ A#"+ B E/8+/# %+%)%"#%a/-)3%- "8/"
"@*$/)3/ .-/8-7"2/ -)"2E "+9 -)*8/-)3/ "998/-- %+)3/ "22.F.#")*85 08*F L3%23 .-/8G
-7"2/ "77#%2")%*+- 8/)8%/$/ "+9 -)*8/ %) %+ " 4#*@"# $"8%"@#/ _tos. 13%- %- 9*+/ @& "##
78*48"F- #%+E/9 L%)3 libc. C%+.D5 3*L/$/85 8/-/)-)3/ "22.F.#")*8 %FF/9%")/#& "0)/8)3/
#*"9/8 0%+%-3/- X)* -%4+"#')3/'8/).8+'$"#./'*0 exec Z5'-*'L/'2"+!)'.-/')3")'8/4%-)/8')*'+*)%0&
.-/8-7"2/'"77#%2")%*+-'*0')3/ Tos "998/--H

:- " L*8E"8*.+95 L/ .-/9)3/ 7"99%+4 78*48"F 9/-28%@/9 %+)3/ 78/$%*.- -/2)%*+5
)* F"+4#/)3/ %+-)8.2)%*+)3") 0/)23/9)3/ "998/-- 08*F EAX "+9 23"+4/9 %))* 0/)23)3/
"998/-- 08*F EBX %+-)/"9 XC%+.D 9*/- +*) F*9%0& EBX %+ "+& L"& @/)L//+)3/ #*"9/8!-
/+9 "+9)3/ 78*48"F!- @/4%++%+4ZH 13/ *72*9/ 0*8)3/ MOV %+-)8.2)%*+ %- 0x89. 13/
0%8-)'%+-)8.2)%*+'%+'"')&7%2"#'A#"+'B'.-/8-7"2/'"77#%2")%*+5')3/8/0*8/5'L*.#9'.-."##&'@/]

89 05 xx xx xx xx

L3/8/ !DD DD DD DD! 9/+*)/- " YUS@%) "998/-- 2*88/-7*+9%+4)*)3/ 4#*@"# $"8%"@#/
_tos %+')3/ DATA -/2)%*+H

?/'23"+4/')3%-'%+-)8.2)%*+')*]

89 1D xx xx xx xx

%+'"22*89"+2/'L%)3'Dcd'*72*9/')"@#/'PdR'0*8 MOV:

4

!!!

8YUXK8Z `:N !! `>N !! `eN !! `;N !! `<A !! `;A !! `<, !! `e,!!!

:998/-- !*9 =K! f"#./'*0'!*9=K!';&)/-'X,+'[/DZ!!!

P`:NR gg ggg gg gc Qg Qc Ug Uc Yg Yc!!!

P`>NR ggQ gQ gB QQ QB UQ UB YQ YB!!!

P`eNR gQg gU g: QU Q: UU U: YU Y:!!!

P`;NR gQQ gY g; QY Q; UY U; YY Y;!!!

PSRPSR Qgg g^ g> Q^ Q> U^ U> Y^ Y>!!!

9%-7YU QgQ g_ ge Q_ Qe U_ Ue Y_ Ye!!!

P`<,R QQg gd g` Qd Q` Ud U` Yd Y`!!!

P`e,R QQQ gh gV Qh QV Uh UV Yh YV!!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!

!!
!
!
!
!
!
!
!
!
!
!

!!
!
!
!
!
!
!
!
!
!
!

!!
!
!
!
!
!
!
!
!
!
!

!!
!
!
!
!
!
!
!
!
!
!

!!
!
!
!
!
!
!
!
!
!
!

!!
!
!
!
!
!
!
!
!
!
!

!!
!
!
!
!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!

3.5. System call handler

M+2/)3/ #*"9/8 3"9 @//+ L8%))/+5)3/ +/D) F"T*8)"-E L"-)* @/ "@#/)* %+)/82/7)
-&-)/F 2"##-H ,+ C%+.D5 -&-)/F 2"##- "8/ %+$*E/9 .-%+4)3/ 0x80 %+)/88.7)5 L3%23 8"%-/-
)3/ 78*48"FF/9 /D2/7)%*+ L%)3)3") $/2)*8H 13/ 2"##%+4 78*2/-- 7"--/-)3/ -&-)/F 2"##
+.F@/8)* %9/+)%0&)3/ 8/O.%8/9 -&-)/F 2"## %+)3/ EAX 8/4%-)/8H 13/ E/8+/# -"$/-)3/
2*+)/+)- *0 F*-) 8/4%-)/8- %+)3/ E/8+/# F*9/ -)"2E5 3/+2/ *)3/8 7"8"F/)/8-)*)3/ -&-G
)/F 2"## X%0 8/O.%8/9Z "8/ 7#"2/9 *+ -.@-/O./+) 8/4%-)/8-H 13/ 3"+9#/8 %- /D%)/9 L3/+
)3/ -&-)/F 2"## 0%+%-3/-5 "+9)3/ 8/4%-)/8- "8/ 8/-)*8/9H 13/ 8/).8+ $"#./ *0)3/ -&-)/F
2"## %- 7#"2/9 %+)3/ "22.F.#")*85 L3/8/ %) %- 7%2E/9 .7 @&)3/ 2"##%+4 78*2/--H :+ /D"FG
7#/'*0'"'![/##*'?*8#9! 78*48"F'%+'7.8/'"--/F@#&'0*8'C%+.D'%-'78*$%9/9'0*8'2#"8%)&]

section .data
hello: db ’Hello World!’, 10
helloLen: equ $−hello

section .text
global _start

_start:
mov eax, 4
mov ebx, 1
mov ecx, hello
mov edx, helloLen
int 80h
mov eax, 1
mov ebx, 0
int 80h

13"+E0.##&5')3/'F/)3*9'*0'-&-)/F'2"##'%+$*2")%*+'%+ A#"+ B %- +*) $/8& 9%00/8/+) 08*F
L3") %- 9/-28%@/9 "@*$/H 13/ *+#&)L* @%4 23"+4/- "8/] "Z A#"+ B .-/- 78*48"FF/9
/D2/7)%*+ $/2)*8 0x40)* +*)%0&)3/ E/8+/#5 "+95 @Z A#"+ B "77#%2")%*+- -)*8/ "84.F/+)-
0*8)3/ -&-)/F 2"## *+)3/ .-/8-7"2/ -)"2E5 T.-) #%E/ 0*8 "+& *)3/8 0.+2)%*+ 2"##H :+ /D"FG
7#/'78*48"F'0*8'A#"+'B'L%##'F"E/')3/'9%00/8/+2/-'2#/"8]

5

DATA string<>+0(SB)/8, $−"Hellog
GLOBL string<>+0(SB), $8
TEXT _main+0(SB), 1, $0
MOVL $1, 4(SP)
MOVL $string<>+0(SB), 8(SP)
MOVL $7, 12(SP)
MOVL $−1, 16(SP)
MOVL $−1, 20(SP)
MOVL $51, AX
INT $64
MOVL $string<>+0(SB), 4(SP)
MOVL $8, AX
INT $64

J+0*8).+")/#&5)3/ C%+.D E/8+/# L"- +*) @.%#))* -.77*8))3/ %+)/82/7)%*+ *0 9%00/8/+)
%+)/88.7) $/2)*8- %+ " E/8+/# F*9.#/H 13/ %+%)%"#%a")%*+ %- 9*+/ ") @**))%F/5 3/+2/5 0*8
)3%- 7"8) *0)3/ 78*T/2)5 L/ 3"9)* 9%8/2)#& /9%))3/ E/8+/# -*.82/ X"- *77*-/9)* " F*9G
.#/'"-'9*+/'0*8')3/'@%+"8&'0*8F")'#*"9/8ZH

arch/x86/kernel/traps_32.c %- L3/8/ 78*48"FF/9 /D2/7)%*+ 4")/- "8/ 28/G
")/9H 13/ 8*.)%+/ set_system_gate() %- 78*$%9/9 @&)3/ E/8+/#)* -/) "+ %+)/88.7)
-/8$%2/'8*.)%+/'X,<=Z'0*8'"'7"8)%2.#"8'/D2/7)%*+'$/2)*8H ?/ .-/9)3") 0.+2)%*+)* -/) " 4")/
0*8 %+)/88.7) $/2)*8 gD^gH :- 0*8)3/ ,<=5 L/ 2*7%/9)3/ -"F/ 8*.)%+/ "- 0*8 %+)/88.7)
$/2)*8 gDcg5 L%)3)3/ /D2/7)%*+ *0 2"##%+4 " 2.-)*F -&-)/F 2"## %F7#/F/+)")%*+ %+)3/
/+9] sys_plan9(), %88/-7/2)%$/ *0)3/ -&-)/F 2"## +.F@/8 %+)3/ "22.F.#")*8H 13/
,<= 2*7%/-)3/ 8/4%-)/8 $"#./-)*)3/ E/8+/# -)"2E "- .-."#5 "+9)8%44/8- sys_plan()
L%)3 "778*78%")/ "84.F/+)-H ?/ .-/)3/ $"#./ *0)3/ EBP 8/4%-)/8)* *@)"%+)3/ -)"2E
7*%+)/8 %+ .-/8-7"2/ "+9 /D)8"2) -&-)/F 2"## "84.F/+)- .-%+4)3/ __get_user() 8*.G
)%+/ 78*$%9/9 @& C%+.DH 13/-/ "84.F/+)- "8/ %+).8+ 7"--/9)* "+ %+)/8+"# -&-)/F 2"##
%F7#/F/+)")%*+H <*F/)%F/-)3%- F/"+- 2"##%+4 "+ /D%-)%+4 C%+.D -&-)/F 2"##5 @.) %+
F"+& 2"-/-5 L/ 3"9)* L8%)/ *+/ 08*F -28")23 X/4] sys_fd2path). : -+%77/) *0)3/
sys_plan9 0.+2)%*+'%-'"-'0*##*L-]

asmlinkage long sys_plan9(struct pt_regs regs) {
.
/* retrieving arguments from userspace stack */
unsigned long *addr = (unsigned long *)regs.esp;
/* check syscall number and invoke */
switch (regs.eax) {
.
case 51: /* pwrite */
arg1 = *(++addr);
arg2 = *(++addr);
arg3 = *(++addr);
addr = addr + 2;

offset = (loff_t) *(addr);
if (offset == 0xffffffff)
retval = sys_write(arg1, (const char __user*)arg2, arg3);

else
retval = sys_pwrite64(arg1, (const char __user*)arg2, arg3, offset);

break;
}

}

6

4. Conclusion

;& %F7#/F/+)%+4 Q_ *0)3/ YB -&-)/F 2"##-5 L/ 4*) " -.878%-%+4 +.F@/8 *0 "77#%2"G
)%*+-)* 8.+H `D"F7#/- %+2#.9/ 8c, sed, grep, echo, cat, tar, cb, cal "+9 dc, "F*+4 *)3G
/8-H ?/ @/#%/$/)3") *+ 2*F7#/)%+4 "##)3/ -&-)/F 2"##-5 I#/+9%D L%## 78*$%9/ "+ /D2/##/+)
@"-/ 0*8 9/$/#*7/8-)* -)"8) L8%)%+4 "77#%2")%*+- *+ C%+.D %+)3/ WA#"+ B L"&WH 13/ "@%#%)&
)* 8.+ .+F*9%0%/9 @%+"8%/- %+ @*)3 *7/8")%+4 -&-)/F- %- +*) 78*$%9/9 @& "+& *)3/8 /D%-)G
%+4 "#)/8+")%$/5 L%)3)3/ /D2/7)%*+ *0 B$D XL3%23 %- 9%-2.--/9 %+)3/ "77/+9%DZH 13/ 7/8G
0*8F"+2/'*0')3/-/'@%+"8%/-'L%##'@/')3/'-"F/'"-'*)3/8'+")%$/'#%+.D'@%+"8%/-'@/2".-/'"##')3/
-.77*8)%+4'%+08"-)8.2).8/'%-'@.%#)'9%8/2)#&'%+)*')3/'E/8+/#H

I#/+9%D5 "))3%- -)"4/5 -/8$/- "- 78**0 *0 2*+2/7))3") %9/"- 08*F)3/ A#"+ B -&-)/F
2"+ @/ %+)/48")/9 %+)*)3/ C%+.D E/8+/#H [*L/$/85 %+ *89/8)* "23%/$/)3/ 4*"# *0 78*$%9G
%+4 " 2*F7#/)/ ""A#"+ B /D7/8%/+2/!!)* "77#%2")%*+ 9/$/#*7/8-5)3/8/ %- " #*) F*8/)* @/
9*+/5'L3%23'%-'9%-2.--/9'%+')3/'0*##*L%+4'-/2)%*+H

5. Future Work

?3%#/ F*-) *0)3/ -&-)/F 2"##- 08*F A#"+ B F"7 F*8/ *8 #/-- 9%8/2)#&)*)3/%8 C%+.D
2*.+)/87"8)-5 -*F/ 0/").8/- "8/ .+%O./ A#"+ BH A8*2/-- "+9 "998/-- -7"2/ F"+"4/F/+)
"#*+4 L%)3 7/8S78*2/-- +"F/-7"2/- "8/)3/)L* F*-) %F7*8)"+) "-7/2)-)3") "00/2))3/
%F7#/F/+)")%*+'*0'-&-)/F'2"##-H

=/2/+)#&5)3/ C%+.D E/8+/# "99/9 -.77*8) 0*8 7/8S78*2/-- +"F/-7"2/- $%")3/
CLONE_NEWNS 0#"4 0*8 %)- clone -&-)/F'2"##H'[/+2/5'C%+.D'"#8/"9&'2*+)"%+-'78%F%)%$/-
0*8 +"F/-7"2/ F"+%7.#")%*+5 /$/+ %0)3/& "8/ +*) /D7*-/9)* .-/8-7"2/ "77#%2")%*+-
9%8/2)#&H ?/ @/#%/$/)3") -&-)/F 2"##- -.23 "- mount "+9 bind 2"+ @/ %F7#/F/+)/9
.-%+4 78%F%)%$/- "#8/"9& 78*$%9/9 @&)3/ C%+.D E/8+/#5 "+9 %+9//95 L/ "8/ "#8/"9& L*8EG
%+4 *+)3/FH rfork, *+)3/ *)3/8 3"+95 %- " #%))#/)8%2E%/85 /-7/2%"##& @/2".-/ *0)3/
-7/2%0%2'2*F@%+")%*+'*0)3/ RFMEM "+9 RFPROC 0#"4-b L3%23 8/-.#)- %+)3/ 28/")%*+ *0 "
+/L 78*2/-- -3"8%+4 /$/8&)3%+4 L%)3 %)- 7"8/+)5 /D2/7) 0*8)3/ -)"2EH V*8)3%- 7"8)%2.#"8
7/8F.)")%*+5 %) L%## @/ +/22/--"8&)* 9%4 9//7/8 %+)*)3/ F/F*8& F"+"4/F/+) 78%F%G
)%$/- 78*$%9/9 @&)3/ C%+.D E/8+/#5 @.) %- /+)%8/#& 7*--%@#/H ,+ 0"2)5 -%+2/ L/ "8/ 9/"#%+4
L%)3 E/8+/# 2*9/ 3/8/5 "+&)3%+4 %-)/23+%2"##& 7*--%@#/5)3/ *+#& $"8%")%*+ "F*+4-))3/
9%00/8/+)'-&-)/F'2"##-'%-')3/'"F*.+)'*0'2*9/')*'@/'23"+4/9'"+9K*8'L8%))/+H

13/ *)3/8 F"T*8 0/").8/)* @/ /F.#")/9 %-)3") *0)3/ -&+)3/)%2 0%#/ -&-)/F- 78*G
$%9/9 @&)3/ A#"+ B E/8+/#H <%+2/ C%+.D "#8/"9& -.77*8)- -.23 0%#/ -&-)/F- X")#/"-) 7"8G
)%"##& S /D"F7#/- "8/ /proc "+9 /sys), L/)3%+E %) L%## +*) @/ 3"89)* /D)/+9)3%-)*
)8./ A#"+ B 0%#/-&-)/F- -.23 "- /net. /dev/draw 2"+ @/ @.%#) *+)*7)3/ +")%$/
C%+.D'08"F/@.00/8'9/$%2/H

M+2/ L/ %F7#/F/+) "##)3/ -&-)/F 2"##- "+9 -&+)3/)%2 0%#/ -&-)/F- 2*88/2)#&5)3/8/
-3*.#9 @/ +* 7/82/%$"@#/ 9%00/8/+2/ @/)L//+)3/ I#/+9%D E/8+/# "+9 " A#"+ B E/8+/# "-
0"8 "- "+ "77#%2")%*+ %- 2*+2/8+/9H <*.82/ 2*9/ "+9 *)3/8 9/)"%#- 7/8)"%+%+4)*)3/ 78*G
T/2) "8/ "$"%#"@#/ *+ http://glendix.org/. e/$/#*7/8- "8/ /+2*.8"4/9)* 7"8)%2%G
7")/i

Acknowledgements

13%- 78*T/2) L"- @*8+ 08*F /"8#%/8 *7/+ -*.82/ 78*T/2)-5 -* L/ L*.#9 #%E/)* @/4%+
@&)3"+E%+4)3/ A#"+ B "+9 C%+.D 2*FF.+%)%/- 0*8 4%$%+4 .- -.23 48/") -*0)L"8/ "+9
-.77*8))* L*8E L%)3H <7/2%0%2"##&5 L/ L*.#9 #%E/)*)3"+E >3"8#/- V*8-&)35 =.-- >*D5
=/+/ [/8F"+ "+9 :# f%8*5 L3* 2*+)8%@.)/9 -%4+%0%2"+)#&)*)3/ 78*T/2) @& *00/8%+4)3/%8
%+-%43)0.#'2*FF/+)-5'-.44/-)%*+-'"+9'3/#7H

!"T*8 7*8)%*+- *0 I#/+9%D L/8/ /D/2.)/9 "- " 0%+"#)/8F 78*T/2) "))3/ !"#"$%&" (")%*+"#
,+-)%).)/ *0 1/23+*#*4&H ?/ L*.#9 #%E/)*)3"+E e8H f%T"&#"DF% 0*8 3/8)%F/#& 0//9@"2E
"+9'-.44/-)%*+-H

7

References

PQR =*@ A%E/5 e"$/ A8/-*))*5 </"+ e*8L"895 ;*@ V#"+98/+"5 j/+ 13*F7-*+5 [*L"89
18%2E/&5 "+9 A3%# ?%+)/8@*))*F5 ""A#"+ B 08*F ;/## C"@-!!5 >*F7.)%+4 <&-)/F-5 85 Y5 <.FG
F/8'QBB_5'77H'UUQSU_^

PUR'""I(J!-'(*)'J+%D!!5'3))7]KKLLLH4+.H*84K

PYR'=.--'>*D5'""A#"+'B'08*F'J-/8'<7"2/!!5'3))7]KK-L)23H2*FK7#"+B7*8)K

P^R'""A#"+'B'A8*48"FF/8!-'!"+."#!!5'3))7]KK7#"+BH@/##S#"@-H2*FK-&-KF"+K

P_R':#/--"+98*'=.@%+%5'""A#"&%+4'L%)3'@%+"8&'0*8F")-!!5

3))7]KKLLLH#%+.DH%)Kk8.@%+%K9*2-K@%+0F)K@%+0F)H3)F#

PdR'"",+)/#'d^'"+9',:SYU':823%)/2).8/-'<*0)L"8/'e/$/#*7/8!-'!"+."#!!5'$*#.F/'U:

PhR ;8&"+ V*895 =.-- >*D5 ""fDYU] C%43)L/%43) J-/8S#/$/# <"+9@*D%+4 *+)3/ Dcd!!5
J<`(,N':++."#'1/23+%2"#'>*+0/8/+2/5'<.FF/8'UggcH

Appendix: Comparison to 9vx

fDYU PhR %- " .-/8SF*9/ #%@8"8&)3") L"- 8/2/+)#& 9/$/#*7/9 ") ><:,C5 !,1H 13/ 78%G
F"8& 7.87*-/ *0)3/ #%@8"8& %-)* 78*$%9/ " -"0/ "+9 7*8)"@#/ /D/2.)%*+ /+$%8*+F/+) 0*8
.+)8.-)/9 Dcd 2*9/H M+/ *0)3/ %+)/8/-)%+4 "77#%2")%*+- *0)3%- %-)3/ "@%#%)&)* 8.+ A#"+
B /D/2.)"@#/- *+ "## 7#")0*8F-)3") fDYU -.77*8)- X2.88/+)#& V8//;<e5 C%+.D "+9 !"2 M<
NZH'B$D'%-')3/'78*T/2)')3")'.-/-'fDYU')*'8.+'"+'%+-)"+2/'*0')3/'A#"+'B'-&-)/FH

M+)3/ -.80"2/5 %) F"& -//F #%E/)3/ *.)2*F/- *0 B$D *+ C%+.D "+9 I#/+9%D "8/ -%F%#"85
@.))3/8/ "8/ F"+& %F7*8)"+) 9%00/8/+2/-H fDYU 2"+ @/ 2*F7"8/9 %+ " $/8& 8*.43 -/+-/
)* " $%8)."# F"23%+/5 "+9)3.-)3/8/ %- " 9%-T*%+) @/)L//+)3/ @%+"8%/- 8.++%+4 %+-%9/ %)5
"+9)3/ *7/8")%+4 -&-)/F %) 8.+- *+H I#/+9%D5 3*L/$/85 "%F-)* 78*$%9/ " F*8/ 2#*-/
2*.7#%+4 @/)L//+ A#"+ B "77#%2")%*+- "+9)3/ C%+.D E/8+/#5 L3/)3/8 &*.)8.-))3/ /D/G
2.)"@#/- *8 +*)H </2*+9#&5 fDYU %- 8/-)8%2)/9)* Dcd @%+"8%/- *+#&H ?3%#/)3%- 7"7/8 9%-G
2.--/- *+#&)3/ Dcd %F7#/F/+)")%*+ *0 I#/+9%D5 L/ 2"+ /"-%#& /D)/+9 %))* 2*$/8 *)3/8
"823%)/2).8/-'"-'L/##5'4%$/+')3/'28*--S7#")0*8F'+").8/'*0'@*)3'A#"+'B'@%+"8%/-'"+9'C%+.DH

8

Upperware: Pushing the Applications Back Into the
System

Gorka Guardiola, Francisco J. Ballesteros, Enrique Soriano

Rey Juan Carlos University, Spain
{nemo,paurea,esoriano}@lsub.org

ABSTRACT

It is quite difficult and tedious to share devices among different operating
systems. If we also want to share other resources, like the state of a web
browser or an editor, it becomes next to impossible.

Similar problems are solved inside Plan 9 [14] and Inferno [4] by using
the 9P protocol [9]. The normal approach, though, is to write an applica
tion or a device driver providing a filesystem interface. Our problem is
somewhat different. We already have native applications like Word or Fire
fox. How can we use these applications, native to several operating sys
tems, and at the same time have the ease of communications provided by
9P?.

In this paper we propose a simple way to do it: Wrap the applications and
drivers with a controlling filesystem running on Inferno, hosted on the
relevant machines. Then, export and share the filesystems, exporting
them even to the local host system through some protocol it under
stands. Without much configuration, the user can print and read docu
ments simply by using drag and drop at any of the involved machines.
We propose the name upperware for this approach, which tries to
abstract applications instead of the underlying system.

1. Introduction

The idea of Octopus [3] is to centralize the state of the applications in a computer that
we call the PC. Then the user can run the terminal software which exports local
resources as filesystems to applications running on the PC. Local resources may be
applications and devices running at the terminal. In order to integrate these applica
tions with the rest of the system we had to wrap them with filesystems, aggregating
some attributes to them so they could be selected automatically. We have found that
this approach is very simple yet powerful and lets users share resources easily without
much configuration. We call it upperware. By proceeding further and exporting the
resulting name space back to the underlying host OS, we reach a portable way to inte
grate the heterogeneous terminal, in a transparent way. By carefully thinking the filesys
tem interfaces, so that they can be used by copying files, we can convert this approach
into a general solution even for non programmer users, which can do most things by
drag-and-drop.

This work supported in part by Spanish TIN-2007-67353-C02-02 and CAM S-
505/TIC/0285.

9

We have applied the upperware principle by writing ’devicedrivers� for high level applica
tions and services available on various systems we use. This includes printing, docu
ment viewers, voice synthesis, user activity monitoring, and a web browser service (still
underway). In this article we describe such �device drivers�, their interface and what can
be gained by using upperware: seamless communication and easy of use across hetero
geneous platforms. We feel that upperware can be useful in general to integrate differ
ent platforms, taking the place of typical object-oriented middleware (OOM) approach.

Note that unlike in middleware systems, we wrap the namespace and make it available
to the underlying system (at each terminal) in a transparent way. For the host the name
space is just another file volume. However, it provides all sort of services for the user.
Being natively available, native applications are able to use such name space as the user
sees fit.

2. Organization

Experience with Plan 9, Inferno and Plan B [2] taught us that exporting devices and
applications as synthetic filesystems makes it easy to integrate them into a distributed
operating system. Applications like acme(1) [8] and rio(1) benefit greatly from
programability by exposing a synthetic filesystem.

But our problem and approach is not quite the same, even if we still want to expose
software resources from the underlying operating system and integrate them into a
name space. Inferno does this to some extent with its devices while running hosted. The
main difference is that Inferno places itself side by side to the host operating system,
that is, it provides its own distinct virtual platform. Instead, we try to place ourselves
above all the software running natively, meaning that we try to take advantage of the
underlying operating system as much as possible, including also some of the applica
tions.

What we are trying to accomplish is similar in approach to what Inferno does with the
underlying filesystem of the host and to what 9vx does with the TCP/IP stack. We are
trying to wrap software resources with a filesystem but using all the mechanisms pro
vided by the host to ease programability and to interact with the user when necessary.

When trying to wrap underlying applications, we have to be careful to distinguish
between two types of interfaces (meaning the semantics we assign to the filesystem):
passive and active:

1.Passive interfaces wrap devices that are similar to low level devices. They do not
require interaction with the user via the underlying system. In a sense they are data
sinks and sources. Examples of this are the Octopus voice synthesis and printer
devices. The fact that they do not require interaction with the user is very important,
because it places restrictions on the way they should behave. For example, if the user
imports a printer from a nearby computer and sends something to print, she does not
want the remote host OS to ask her what paper size to use in the remote computer.
Instead, it is more convenient if the file system interfaces provides an agreed-upon
standard configuration and some means to change it.

2.Active interfaces wrap applications which do require interaction with the user. They
are normally conduits of data or, at least, control the data flow. Examples of this kind
of interface are editors and web browsers. An editor takes some file, changes it and puts

10

it somewhere else as dictated by the interaction with the user. This interaction happens
in the underlaying host system of the computer providing the service.

Orthogonal to this classification, but also important, is that for some of these devices it
may be desirable to keep their state across computers and/or sessions, which affects
the implementations of the servers to be provided (e.g., editors would copy the files, to
remain autonomous).

Figure 1: Upperware organization.

The filesystems we share in this fashion need some attributes to let the user select them
appropriately by their location, operating system, etc. By convention, we add a file
named ndb to the root of each filesystem. This file contains a list of attribute/value
pairs describing the system exported. Such information is also kept at a central registry,
for the user to look. In this way, the filesystem carries within itself its own description,
should the user need to know.

3. Spooling

One thing we have found while trying to devise ways to expose and interact with the
synthetic filesystems, is that spooling is a powerful strategy. By spooling we do not refer
just to the classical spooling interface, because for us the directory doing the spooling is
synthetic and some magic may occur in it. Nevertheless, the main idea remains the
same: Files are copied to a directory and things happen to them when their turn comes.
The resulting mechanism is similar to Apple droplets [1], as far as the user is concerned.
Copying a file to a directory triggers an action.

Spooling also provides a way to interact with the filesystem through the host OS. Spool
ing directories are exported back to the host system using, for example, WebDAV. A
simple drag and drop may be used to print a file or to edit it, hiding to the end user the
details of the hosted system providing the mechanism.

11

Besides, spooling provides a way to structure the software. A whole filesystem does not
need to be implemented for each different service (device or application); just some
functions implementing the action performed to the files inside the spooler.

In the current implementation there is a portable module implementing the spooling
filesystem. For each different spooler, an architecture dependant implementation of a
spooler module provides an interface to the actual service. This interface has three oper
ations, start stop and status. When a file has been copied (detected by the clunk
on a fid open for writing) start is called. In some circumstances, reading a file also
triggers a call to start. This makes the operation to be performed automatically when
a file is copied to the directory. The stop operation gets called when a file is removed
from the directory. It provides a mean for the user to abort or cancel a spooling on pro
gress.

Using this simple scheme, we have a portable interface which can be used right from the
file browsers provided by most (all?) host operating systems as well as a simple way to
implement new servers and a straightforward user interface, well known by any user no
matter the system employed.

Two example of spooling servers, discussed next, are the view and print devices.

3.1. View

View is an implementation of the spooler interface, i.e., provides a spooling device for
viewing files and documents. It relies on the generic open command of the host OS to
open the relevant file when its start function is called. For example, the device uses
gnome−open in Linux, open in MacOS, and the plumber on Plan 9.

The device is intended for reading documents, like PDF or similar formats, in a passive
way, although it is a little more general than that. For example, copying an MP3 file
would reproduce it on the default player and, in a similar way, can be used to display
images, play video files, open documents and web pages, etc. But note that edition of
the browsed files is not supported by the device.

3.2. Print

Print is the interface to the printer system of the host OS. It is also a spooler module. A
filed copied onto it is printed like in an old fashion printing spooler system. At the
moment it uses the (CUPS) lpr commands in Mac OS and Linux, and lp in Plan 9. It
prints just to the default printer with the default options, without any possibility of con
figuration. There has also been an ad-hoc printer module for Windows.

Even though this module is quite naïve, it has proved to be highly useful. Using it, it
becomes trivial to do things like print to the closest printer (selected automatically via
the ndb) from different locations and different operating systems.

4. Voice

This is a simple device, not based on the spooler. Voice exports mostly a file (apart
from the ndb) which can be written to. Any text written into it is synthesized as voice.
This is used mostly for messages of the system, but it can also be used for messages
among users, like on Plan B.

Used with care (of not annoying the user by frequent messages), it is a useful comple
ment for other interfaces to the system. For example, long termed commands, meaning
those that do not complete after several seconds, generate a complete voice message to

12

reassure the user that the command has finished.

In Mac OS we use a dynamically generated AppleScript script. For Linux we use esspeak.
On Plan 9 we rely on the Plan B device for voice synthesis, which is actually relaying the
work to any near-by Linux machine equipped with Festival.

5. Idle

In order to do things automatically, our system needs to know if the user is idle, mean
ing if he is using the terminal or not. Of course, we also need to know which terminal
has been used last, to locate the user. This is done by employing some heuristics on
data collected from several interactive applications and from the system I/O statistics.
The Idle device is responsible for collecting such data and updating agreed-upon files
describing the activity of the user on all her terminals. The rest of the system relies only
on the portable files (and events) and does not need to be concerned about platform-
specific details.

6. Web

We are currently developing a device for the web browser, browserfs. The first proto
type offers three synthetic files to pull data from the web browser (open, history,
and bookmarks) and a ctl file to push data and perform basic operations on the
browser. All pull files are read-only and exclusive-open.

The three pull files provide their data in a canonical format. Different browsers use dif
ferent formats to store data (mainly XML), but this is hidden by the provided interface.
Browserfs offers the information using plain text files, in order to make it easy for
humans to read it and for programs to transform it.

When a pull file is opened, the device retrieves the corresponding data from the host�s
browser by executing certain native programs on the host.

The open file offers the list of URLs that are currently opened in browser�s windows and
tabs, one per line. It corresponds to the pages being viewed presently.

History provides the last 100 entries in the browser�s history record. Each line is formed
by the date of the entry (seconds since epoch), the URL for the entry, and the title of the
HTML page, separated by blanks. This format is easily tokenizable, because the date and
the URL cannot include blanks.

The bookmarks file provides the list of bookmarked pages, as contained in a particular
folder in the browser interface. The user is in charge of creating any new bookmarks in
this folder to make them available from all his octopus terminals. This way, the user is
able to select which bookmarks are shared among terminals and which ones are not. As
it could be expected, the format of the bookmarks file is simply one bookmark per line,
formed by the URL and its description.

The ctl file is used to push data and to perform control operations on the terminal�s
browser. So far, it implements only two commands: open and close. The open command
executes the browser if it is not yet executing, makes a new window, and opens the
given URLs in tabs. For example:

echo open http://google.com http://lsub.org > /term/browser/ctl

The close command forces the browser to close its windows and quit.

Together with browserfs we provide several scripts to capture and recreate the state of
the browser.

13

The script bookmarks.sh reads the bookmarks from the user�s terminals (i.e.
/pc/terms/*/browser/bookmarks) and merges them on a single file, that is automati
cally opened by the browser of the terminal in which it is executed. The same is done
by history.sh for history entries, offering a HTML file with entries ordered by date.

Although this simple approach works for providing the web browsing state to the user,
it is not enough to create a full illusion of using the same browser at all the terminals.
Several extra control operations to update the browser�s idea of bookmarks and history
would be needed (not to talk about cookies).

In any case, the current version as described provides a portable implementation.

7. Mobile devices

For some devices it may be desirable for their state to follow the user. For example, we
might want to keep the set of web pages being viewed the same, no matter the terminal.
For other devices or terminals we may not want this to happen. Only the user knows the
appropiate thing to do.

We try to provide this facility in a simple way, leaving it up to the user the choice of
when and for which services it is to be employed. The overall scheme is described next,
but we it is to be noted that this facility is still in the early stages and is not yet avail
able.

We will try to keep this description concrete to the example of the browser, though the
ideas are easily generalizable. We are currently working on this implementation of the
browser. Before the user turns off a terminal, a shell script, dump.sh, is executed. This
script stores the data of the terminal�s browser in real files, in a well-known directory
of the PC. When the users turn on a terminal, another script, restore.sh, is executed.
This script reads the files in the well-known directory and recreates the state in the
terminal�s web browser. Another script, followme.sh, can automatically dump and
restore data when the user location changes (i.e. he moves from one office to another).
We will experiment with browserfs in order to create common policies for other applica
tion wrappers.

8. Implementation

The implementation of the machine dependant modules is a mixture of shell scripts,
applescripts, C and whatever the host system might provide to do the job at hand.

Some of the operations that have to be done in the underlying system are trivial to
implement, while other are annoying. It all depends on the interface offered by the
application considered and the set of tools available.

For example, Applescript on Mac OS X provides a reasonable interface to control most
applications. For instance, the Safari API provides operations to deal with tabs, URLs,
and execute Java Script over a document, so some operations are easy to implement.
On the other hand, Safari does not contemplate bookmark and history manipulation by
third parties, so we have to deal with Mac OS property list (XML) files by hand.

We try to keep the number of features to a minimum so that the implementation is easy
to write for all the operating systems involved as hosts for the Octopus. In the cases in
which we can avoid most of the interaction with the native applications by relying on
files instead, we do so.

This way, it is easier to keep up with the idiosyncrasies of the different systems, ver
sions and applications involved. We also try to use the default or most popular

14

applications of the system if there is more than one. For example, in Linux we are stick
ing whenever possible to applications which come by default with Ubuntu and Gnome.

To give a taste of how simple it is to write upperware for applications in Mac OS we will
give the SLOC for the relevant parts in the Octopus. Most of the code is Limbo, with
some scripts and applescripts generated at run time for the MacOS dependant part.

Tables 1 and 2 show the lines of code needed to implement the wrappers themselves,
including the spooler (portable and Mac OS modules, respectively). Table 3 shows the
lines of code needed to implement the Mac OS scripts of the current version of
browserfs. Table 4 shows the lines needed to implement the infrastructure to be able to
reexport the fileservers to the local host and to select the appropiate tree automagically.

lines module______________________
288 browserfs.b______________________
277 spool.b______________________
110 view.b______________________

Table 1: Lines of code, portable modules.

lines module______________________

94 idle.b______________________
159 mbrowser.b______________________
82 print.b______________________

Table 2: Lines of code, Mac OS modules.

lines program_____________________________________
269 browserfs.scpt (applescript)_____________________________________

Table 3: Lines of code, host commands.

lines program___________________
1662 webdav___________________
177 watcher___________________
751 mux___________________

Table 4: Lines of code, infrastructure to reexport the fileservers to the local host.

9. Related work

Middleware commonly sits between the application and the operating system and tries
to abstract the operating system. We are trying to do the opposite, and abstract the
application to make it available to the system (i.e., to other systems).

We are by no means the first ones to wrap local devices of the host OS and to export

15

them using a lower level API. Npfs [6] and 9vx [5] wrap the local TCP/IP stack, for exam
ple with a filesystem. Inferno, drawterm, and many virtual machines like VMWare [12]
[13] are able to export the local filesystem and some devices by using the host os. This
is a common technique used in paravirtualization. The main difference is that we are
trying to wrap high level devices and applications.

Filesystem like clients like ftpfs(4) or sshfs(4) try to wrap servers using filesys
tems as clients. The idea is similar to what we are trying to achieve, but they are remote
servers. Here the application would be the client and it is built into the filesystem. We
are wrapping local applications instead, also with a filesystem, in order to export them.
In a sense, it is the reverse strategy.

Some early rudimentary attempts have been made before to export applications like a
browser using plumber and ssh see [7]. As far as we know no one has tried wrapping
them with a full fledged filesystem, which is much more rich in its interface and possibil
ities.

Regarding web browsing, there are utilities to manage and share bookmarks, such as
Del.icio.us [10]. There are also programs to merge and translate bookmark files from
different browsers [11]. None of these systems provide mechanisms to automatically
recreate the state of the browser in different machines which is finally our goal. Also,
they are meant just for a single particular service (web browsing) and not for all other
tools needed by a computer user.

10. Conclusions

Our experience with the Octopus has made us realize how easy can it be to use applica
tions once they are wrapped up and integrated back into the system interface. Some
thing as simple as the print device which accounts for less than 500 lines of code includ
ing the spooler filesystem enables the user to print from Linux to Mac OS and viceversa
(something that, perhaps surprisingly, we could not do due to incompatibilities between
different native systems involved). It is amazing that similar issues are still problems in
practice due to different configurations, security, and version issues. With upperware
this can be accomplished smoothly keeping the user oblivious to the magic glue hiding
behind the scene. The same goes for most other devices and services.

11. Future work.

More applications are to be wrapped to have a complete set. The web browser proto
type has been written for Safari, but there is not yet supported for the other main-
stream operating systems. An editor and a music player filesystem need to be written
as well.

As of today, the spooler does not listen to messages from the application to detect when
the user is done with a file (e.g., when a view window has been closed). Some infras
tructure is already available for this, but it is not being used. The problem is that this
would suppose a more intimate relationship with the native application, making it
harder to write/port the machine dependent part of the service.

Support for Windows is also needed, but none of the Octopus developers use Windows
daily and, although basic services are available thanks to the portability of Inferno, much
remains to be done.

16

References

1. Apple, Shiny Droplets,
http://www.apple.com/downloads/macosx/productivity_tools/shinydroplets.html,
2008.

2. F. J. Ballesteros, G. Guardiola, K. L. Algara, E. Soriano, P. H. Quirós, E. M. Castro, A.
Leonardo and S. Arévalo, Plan B: Boxes for network resources, Journal of the Brasil
ian Computer Society. Special issue on Adaptable Computing Systems. To appear.
Also in http://lsub.org/ls/export/box.html, 2004.

3. F. J. Ballesteros, P. Heras, E. Soriano and S. Lalis, The Octopus: Towards building
distributed smart spaces by centralizing everything., UCAMI, 2007.

4. S. Dorward, R. Pike, D. L. Presotto, D. M. Ritchie, H. Trickey and P. Winterbottom,
The Inferno Operating System, Bell Labs Technical Journal 2, 1 (1997), .

5. B. Ford and R. Cox, Vx32: Lightweight, User-level Sandboxing on the x86, USENIX,
2008.

6. Npfs, Npfs project, http://sourceforge.net/projects/npfs, 2007.

7. R. pike, Message by rob pike in 9fans: My web browsing technique,
http://9fans.net/archive/2002/11/529, 2003.

8. R. Pike, Acme: A User Interface for Programmers, Proceedings for the Winter
USENIX Conference, 1994, 223-234. San Francisco, CA..

9. D. Presotto and P. Winterbottom, The Organization of Networks in Plan 9, Plan 9
User’s Manual 2.

10. J. Schachter, Del.icio.us, http://del.icio.us, 2003.

11. E. Software, Bookit, http://everydaysoftware.net/bookit, 2003.

12. J. Sugerman, G. Venkitachalam and B. H. Lim, Virtualizing I/O Devices on VMware
Workstation�s Hosted Virtual Machine Monitor, USENIX Annual Technical Confer
ence, 2001, 1-14.

13. VMWare, VMWare, http://www.vmware.com, 2001.

14. Plan B User�s Manual. Second edition., Laboratorio de Systemas, URJC. GSYC−Tech.
Rep.−2004−04., 2004.

17

18

Scaling Upas

Erik Quanstrom
quanstro@coraid.com

ABSTRACT

The Plan 9 email system, Upas, uses traditional methods of delivery to
UNIX® mail boxes while using a user-level file system, Upas/fs, to trans
late mail boxes of various formats into a single, convenient format for
access. Unfortunately, it does not do so efficiently. Upas/fs reads entire
folders into core. When deleting email from mail boxes, the entire mail
box is rewritten. I describe how Upas/fs has been adapted to use cach
ing, indexing and a new mail box format (mdir) to limit I/O, reduce core
size and eliminate the need to rewrite mail boxes.

1. Introduction

Chained at his root two scion demons dwell
� Erasmus Darwin, The Botanic Garden

At Coraid, email is the largest resource user in the system by orders of magnitude. As
of July, 2007, rewriting mail boxes was using 300MB/day on the WORM and several
users required more than 400MB of core. As of July, 2008, rewriting mail boxes was
using 800MB/day on the WORM and several users required more than 1.2GB of core to
read email. Clearly these are difficult to sustain levels of growth, even without growth
of the company. We needed to limit the amount of disk space used and, more urgently,
reduce Upas/fs� core size.

The techniques employed are simple. Mail is now stored in a directory with one mes
sage per file. This eliminates the need to rewrite mail boxes. Upas/fs now maintains an
index which allows it to present complete message summaries without reading indexed
messages. Combining the two techniques allows Upas/fs to read only new or refer
enced messages. Finally, caching limits both the total number of in-core messages and
their total size.

2. Mdir Format

In addition to meeting our urgent operational requirements of reducing memory and
disk footprint, to meet the expectations of our users we require a solution that is able to
handle folders up to ten thousand messages, open folders quickly, list the contents of
folders quickly and support the current set of mail readers.

There are several potential styles of mail boxes. The maildir[1] format has some attrac
tive properties. Mail can be delivered to or deleted from a mail box without locking.
New mail or deleted mail may be detected with a directory scan. When used with WORM
storage, the amount of storage required is no more than the size of new mail received.

19

Mbox format can require that a new copy of the inbox be stored every day. Even with
storage that coalesces duplicate blocks such as Venti, deleting a message will generally
require new storage since messages are not disk-block aligned. Maildir does not reduce
the cost of the common task of a summary listing of mail such as generated by acme
Mail.

The mails[2] format proposes a directory per mail. A copy of the mail as delivered is
stored and each mime part is decoded in such a way that a mail reader could display the
file directly. Command line tools in the style of MH[3] are used to display and process
mail. Upas/fs is not necessary for reading local mail. Mails has the potential to reduce
memory footprint below that offered by mdirs for native email reading. However all of
the largest mail boxes at our site are served exclusively through IMAP. The preformat
ting by mails would be unnecessary for such accounts.

Other mail servers such as Lotus Notes[4] store email in a custom database format
which allows for fielded and full-text searching of mail folders. Such a format provides
very quick mail listings and good search capabilities. Such a solution would not lend
itself well to a tool-based environment, nor would it be simple.

Maildir format seemed the best basic format but its particulars are tied to the UNIX envi
ronment; mdir is a descendant. A mdir folder is a directory with the name of the folder.
Messages in the mdir folder are stored in a file named utime.seq. Utime is defined as
the decimal UNIX seconds when the message was added to the folder. For the inbox,
this time will correspond to the UNIX �From � line. Seq is a two-digit sequence number
starting with 00. The lowest available sequence number is used to store the message.
Thus, the first email possible would be named 0.00. To prevent accidents, message
files are stored with the append-only and exclusive-access bits turned on. The mes
sage is stored in the same format it would be in mbox format; each message is a valid
mbox folder with a single message.

3. Indexing

When upas/fs finds an unindexed message, it is added to the index. The index is a file
named foldername.idx and consists a signature and one line per MIME part. Each line
contains the SHA1 checksum of the message (or a place holder for subparts), one field
per entry in the messageid/info file, flags and the number of subparts. The flags are
currently a superset of the standard IMAP flags. They provide the similar functionality to
maildir�s modified file names. Thus the �S� (answered) flag remains set between invoca
tions of mail readers. Other mutable information about a message may be stored in a
similar way.

Since the info file is read by all the mail readers to produce mail listings, mail boxes may
be listed without opening any mail files when no new mail has arrived. Similarly, open
ing a new mail box requires reading the index and checking new mail. Index files are
typically between 0.5% and 5% the size of the full mail box. Each time the index is gen
erated, it is fully rewritten.

4. Caching

Upas/fs stores each message in a Message structure. To enable caching, this struc
ture was split into four parts: The Idx (or index), message subparts, information on the
cache state of the message and a set of pointers into the processed header and body.
Only the pointers to the processed header and body are subject to caching. The avail
able cache states are Cidx, Cheader and Cbody.

20

When the header and body are not present, the average message with subparts takes
roughly 3KB of memory. Thus a 10,000 message mail box would require roughly 30MB
of core in addition to any cached messages. Reads of the info or subject files can
be satisfied from the information in the Idx structure.

Since there are a fair number of very large messages, requests that can be satisfied by
reading the message headers do not result in the full message being read. Reads of the
header or rawheader files of top-level messages are satisfied in this way. Reading
the same files for subparts, however, results in the entire message being read. Caching
the header results in the Cheader cache state.

Similarly, reading the body requires the body to be read, processed and results in the
Cbody cache state. Reading from MIME subparts also results in the Cbody cache
state.

The cache has a simple LRU replacement policy. Each time a cached member of a mes
sage is accessed, it is moved to the head of the list. The cache contains a maximum
number of messages and a maximum size. While the maximum number of messages
may not be exceeded, the maximum cache size may be exceeded if the sum of all the
currently referenced messages is greater than the size of the cache. In this case all
unreferenced messages will be freed. When removing a message from the cache all of
the cacheable information is freed.

5. Collateral damage

Each new user of a new system uncovers a new class of bugs.
� Brian Kernighan

In addition to upas/fs, programs that have assumptions about how mail boxes are struc
tured needed to be modified. Programs which deliver mail to mail boxes (deliver, mar
shal, ml, smtp) and append messages to folders were given a common (nedmail) func
tion to call. Since this was done by modifying functions in the Upas common library,
this presented a problem for programs not traditionally part of Upas such as acme Mail
and imap4d. Rather than fold these programs into Upas, a new program, mbappend,
was added to Upas.

Imap4d also requires the ability to rename and remove folders. While an external pro
gram would work for this as well, that approach has some drawbacks. Most importantly,
IMAP folders can�t be moved or renamed in the same way without reimplementing func
tionality that is already in upas/fs. It also emphasises the asymmetry between reading
and deleting email and other folder actions. Folder renaming and removal were added
to upas/fs. It is intended that mbappend will be removed soon and replaced with equiv
alent upas/fs functionality � at least for non-delivery programs.

Mdirs also expose an oddity about file permissions. An append-only file that is mode
0622 may be appended to by anyone, but is readable only by the owner. With a direc
tory, such a setup is not directly possible as write permission to a directory implies per
mission to remove. There are a number of solutions to this problem. Delivery could be
made asymmetrical�incoming files could be written to a mbox. Or, following the exam
ple of the outbound mail queue, each user could deliver to a directory owned by that
user. In many BSD-derived UNIX systems, the �sticky bit� on directories is used to mod
ify the meaning of the w bit for users matching only the other bits. For them, the w bit
gives permission to create but not to remove.

While this is somewhat of a one-off situation, I chose to implement a version of the

21

�sticky bit� using the existing append-only bit on our file server. This was implemented
as an extra permission check when removing files. Fewer than 10 lines of code were
required.

6. Performance

A representative local mail box was used to generate some rough performance num
bers. The mail box is 110MB and contains 868 messages. These figures are shown in
table 1. In the worse case�an unindexed mail box�the new upas/fs uses 18% of the
memory of the original while using 13% more cpu. In the best case, it uses only 5% of
the memory while using only 13% of the cpu. Clearly, a larger mail box will make these
ratios more attractive. In the two months since the snapshot was taken, that same mail
box has grown to 220MB and contains 1814 messages.

__
Table 1 � Performance__

action user system real core size
s s s MB__

old fs read 1.69 0.84 6.07 135__
initial read 1.65 0.90 6.90 25__
indexed read 0.64 0.03 0.77 6.5__

7. Future Work

While Upas� memory usage has been drastically reduced, it is still a work-in-progress.
Caching and indexing are adequate but primitive. Upas/fs is still inconsistently
bypassed for appending messages to mail boxes. There are also some features which
remain incomplete. Finally, the small increase in scale brings some new questions
about the organization of email.

It may be useful for mail boxes with very large numbers of messages to divide the index
into fixed-size chunks. Then messages could be read into a fixed-sized pool of struc
tures as needed. However it is currently hard to see how clients could easily interface a
mail box large enough for this technique to be useful. Currently, all clients assume that
it is reasonable to allocate an in-core data structure for each message in a mail box. To
take advantage of a chunked index, clients (or the server) would need a way of limiting
the number of messages considered at a time. Also, for such large mail boxes, it would
be important to separate the incoming messages from older messages to limit the work
required to scan for new messages.

Caching is particularly unsatisfactory. Files should be read in fixed-sized buffers so
maximum memory usage does not depend on the size of the largest file in the mail box.
Unfortunately, current data structures do not readily support this. In practice, this limi
tation has not yet been noticeable.

There are also a few features that need to be completed. Tracking of references has
been added to marshal and upas/fs. In addition, the index provides a place to store
mutable information about a message. These capabilities should be built upon to pro
vide general threading and tagging capabilities.

22

8. Speculation

Freed from the limitation that all messages in a mail box must be read and stored in
memory before a single message may be accessed, it is interesting to speculate on a few
further possibilites.

For example, it may be useful to replace separate mail boxes with a single collection of
messages assigned to one or more virtual mail boxes. The association between a mes
sage and a mail box would be a �tag.� A message could be added to or removed from
one or more mail boxes without modifying the mdir file. If threads were implemented
by tagging each message with its references, it would be possible to follow threads
across mail boxes, even to messages removed from all mail boxes, provided the under
lying file were not also removed. If a facility for adding arbitrary, automatic tags were
enabled, it would be possible to tag messages with the email address in the SMTP From
line.

9. References

[1]D. Bernstein, �Using maildir format�, published online at
http://cr.yp.to/proto/maildir.html

[2]F. Ballesteros published online at http://lsub.org/magic/man2html/1/mails

[3]MH Wikipedia entry, http://en.wikipedia.org/wiki/MH_Message_Handling_System

[4]Lotus Notes Wikipedia entry, http://en.wikipedia.org/wiki/Lotus_Notes

[5]D. Presotto, �Upas�a Simpler Approach to Network Mail�, Proceedings of the 10th
Usenix conference, 1985.

23

24

Vidi: A Venti To Go

Latchesar Ionkov
Los Alamos National Laboratory∗

lionkov@lanl.gov

ABSTRACT

Vidi is a Venti proxy that allows certain clients to work when there is no connection
to the Venti server. Vidi can be used on computers, such as laptops, to create archives
of the file system even when disconnected, and later to transfer the archives to the Venti
server. This paper describes an archival configuration used by the author as well as the
design and implementation of a proxy that allows it to work in a disconnected state.

1. Introduction

Venti [7] archival server and the utilities for using it, Vac and Vacfs, allow simple and convenient
way of keeping history of computer’s files forever. Venti’s interface doesn’t allow data to be
deleted or modified once it is stored. The fact that block’s address depends on its content
allows Venti to coalesce all blocks with the same content and keep a single copy in its storage.
The archival utilities that use Venti don’t need to implement complex algorithms to detect
which files on the filesystem are modified. Archiving multiple filesystems with similar files
leads to even better utilization of disk’s space. Initially Venti was designed to replace Plan9’s
WORM [6] filesystem, but with Plan9 from User Space [2] the server and clients are also
available for POSIX compatible operating systems.

A common Venti setup consists of a server with many disks, possibly in RAID configuration,
and multiple clients in the same network archiving their filesystems daily on the server. This
setup doesn’t work well when the clients are mobile and can be used disconnected for long
periods of time. If the clients cannot connect to Venti, gaps are introduced in history of the
filesystem, data might be lost, and some of the important advantages of using Venti no longer
exist.

One of the solutions for mobile computers is to run Venti locally, eventually copying the local
Venti content to the central Venti server later. A major drawback for this approach is that
Venti requires at least 105 percent as much disk space as the data stored. The disk space of
the mobile computers is not as abundant as for the servers and desktops and the restriction is
very often unacceptable.

Vidi introduces an alternative solution for disconnected archival that only uses 0.5 to 2 percent
of the space required by running a local Venti server. Instead of keeping locally the content
of all the blocks when making an archive, it keeps only the addresses of the blocks that were
already sent to Venti, and the content of the blocks that were written while the Venti server
was unavailable. Once the mobile computer is connected to its home network, Vidi copies the
blocks to the central Venti server and deletes them from the local disk. A notable disadvantage
of using Vidi is that it doesn’t allow access to previous snapshots when disconnected.

2. Plan9 dump for Linux

2.1. Venti

Venti is a network storage system that uses a hash value of a block’s content as an address
for the block. Once data is stored into the Venti storage, it cannot be deleted. Venti provides
simple interface for storing and retrieving data. When a client sends a data block for storage,

∗LANL publication: LA-UR-08-05603

25

the Venti server responds with the SHA-1 [1] hash of the block contents called score. If the
client needs to retrieve the data, it sends the score to the server and Venti sends back the
block’s content. The maximum size of a block Venti can store is 56 Kilobytes.

Using the SHA-1 hash of a block as an address allows the Venti server to detect blocks with the
same content and ensure that they are stored only once on the disk. This property simplifies
considerably the archival clients because they no longer need to figure out which files on the
file system were changed. If the files are not modified, their subsequent archival is not going
to use any more space in the archival system.

At a higher level, Venti supports storing and retrieving larger files by splitting them into
blocks. The scores of the data blocks are combined into indirect blocks, their scores are
combined further until a single score is produced that can later be used to retrieve the whole
file. Venti files don’t have names or any metadata information typically present for any modern
operating system files. Venti also supports “directory” files that contain description (scores
and some additional information) of Venti files. Each block in Venti has assigned a type value
that indicates whether it is a data block, an indirect block (and the level of indirection), or a
directory block.

Venti ships with utilities to store, copy or retrieve Venti files and directories.

2.2. Vac

Vac is a utility for storing files and directories in Venti. Venti converts the specified list of files
into a list of Venti files and directories, saving the score of the top directory in a special root
block. The score of the root block is returned to the user and can be used to retrieve the
file hierarchy. Vac stores the regular files as a single Venti file. Because the Venti directories
don’t store files’ metadata, each directory is represented with two Venti files – a Venti data
file containing the metadata of the files from the directory, and a Venti directory.

Vacfs is a 9P [4] file server that given a score for a Vac root block can serve all the files stored
with Vac. Vacfs can be used natively in Plan9, or using the v9fs [3] filesystem in Linux.

2.3. Using vac for archival

The Plan9 [5] dump filesystem provides a convenient view of its previous states. Each night a
snapshot of the filesystem is taken and its content is available forever. The content of the file
system on January 1st, 2001 can be reviewed by going to /n/dump/2001/0101 directory.

It is possible to achieve similar results on Linux by using Vac and Vacfs. Each night Vac is
run to store the Linux filesystem in Venti, and the resulting score is saved in separate directory
/YYYY/MMDD. Then Vac is run again with -m option to expand and merge all vac scores in
a single tree. The resulting score can be mounted using v9fs to provide the convenient Plan9
dump interface.

3. Vidi: archive when disconnected

Vidi is a server that speaks the Venti protocol. When the Venti server is available, Vidi acts
as a proxy, redirecting client’s requests to Venti, and Venti’s responses back to the client. In
addition to the redirection, Vidi builds a locally stored cache of scores for blocks that were
sent to Venti. The cache is used in the disconnected state to detect blocks that Venti has and
not store them for later transmission. Blocks whose scores are not present in the Vidi’s score
cache are saved in a block log. Both the score cache and the block log are stored on a local
disk.

Figure 1 shows Vidi’s operation when it is connected to Venti. Reading a block is always sent
to the Venti server. The read operations don’t affect Vidi’s score cache. Writing a block first
checks if its score is present in Vidi’s score cache, and if it is present, a “success” response is
sent back to the client without contacting the Venti server. Otherwise, the block is sent to
the Venti server and on success, the score of the block is saved in Vidi’s score cache.

When Vidi is not connected to Venti (Figure 2), read operations check if the score is present
in the score cache, and if so whether the block is available from the local block log. In the
unlikely case when the block is available locally, its content is sent back to the client, otherwise
Vidi responds with an error. On write, if the score of the block is found in the score cache,
a “success” response is sent to the client. Otherwise, Vidi appends the block content to its
block log and adds the score to the score cache.

26

!"#$%&'(")

!!!!"#!$%&'&!(!)*+'",-./012*'$30/4*55

!!!!!!!!0&06*,78'30/4*$30/4*5

!!!!!!!!4*37/+%$%&'&5

!!!!*.3*

!!!!!!!!4*37/+%*44/4$9+/'!#/8+%95

!!!!!!!!

*+#$,-#-)

!!!!30/4*!(!36&:$%&'&5

!!!!#/8+%!(!0&06*,78'30/4*$30/4*5

!!!!"#!$#/8+%5

!!!!!!!!4*37/+%$30/4*5

!!!!!!!!4*'84+

!!!!"#!$)*+'",-./0178'$%&'&55

!!!!!!!!4*37/+%$30/4*5

!!!!*.3*

!!!!!!!!4*37/+%*44/4$,,,5!!!!!!!!

Figure 1: Operation when Vidi is connected to the Venti server

!"#$%&'(")

!!!!"#$%&!'!()(*"+,"$-(.%"/-(.%"0

!!!!12!/"#$%&!33!4565.,+7)518/"#$%&+)88%"--0

!!!!!!!!8)$)!'!4565.,+%")8/"#$%&+)88%"--0

!!!!!!!!%"-9.#8/8)$)0

!!!!"5-"

!!!!!!!!%"-9.#8"%%.%/:#.$!2.;#8:0

*+#$,-#-)

!!!!-(.%"!'!-*)</8)$)0

!!!!2.;#8!'!()(*"+9;$-(.%"/-(.%"0

!!!!12!/=2.;#80

!!!!!!!!2.;#8+)88%"--!'!4565.,+)99"#8/8)$)0

!!!!%"-9.#8/-(.%"0

Figure 2: Operation when Vidi is disconnected from the Venti server

Vidi keeps two pointers into the block log – of the first block that wasn’t sent to Venti yet,
and the position where the next block should be written to. When Vidi is reconnected to the
Venti server, it starts sending the blocks from the block log to Venti. When all blocks are sent,
i.e. the two pointers have the same value, the block log size is reset to the initial size. When
a block is appended to the block log, its address doesn’t directly reflect the offset where it is
written in the log file. The block addresses always grow, even when the block log is shrunk
after all blocks are submitted to Venti. This prevents updating the score cache addresses once
the blocks are not in the block log anymore. When the block file is shrunk, Vidi updates a
third pointer it keeps which keeps the logical address of the first block in the file. To check
if a block for a score stored in the score cache is still available in the block log, Vidi checks if
the “start” pointer is greater than the address of the block.

Unlike Venti’s index, Vidi’s score cache can drop scores of existing blocks. That can cause
blocks that are already present in Venti (and even in the block log itself) to be added to Vidi’s
block log. The duplicates don’t cause incorrect operation for Venti or Vidi. The only issue is
the increased size of the local block log file. Our results show that with a reasonable size of
the score cache, the number of duplicate blocks is not outrageous.

In addition to saving the score cache on a local disk, Vidi keeps some of the scores in RAM to
improve the performance.

The prototype Vidi server is implemented for Unix operating system in 4000 lines of C code.
It doesn’t use the standard libventi libraries that are distributed with Plan9 from User Space.

3.1. Score cache disk layout

The disk layout (Figure 3) of Vidi’s score cache is similar to Venti’s index layout. The available
disk space is divided into buckets (64K by default) and each bucket contains a map for a slice
of the score space. The entries in the bucket are sorted by score. Unlike Venti, which depends
on its index not overflowing, Vidi is designed to handle overflows and keep the most recently
used scores in a bucket. Vidi doesn’t keep a global LRU list. Instead it keeps per bucket LRU
list. If a score needs to be added to a bucket, the least recently used entry in the bucket is

27

removed. In order to keep a LRU list, in addition to the block score, and its position in the
local block log, the entry has pointers to the previous and next entry in the list.

!"#$%&'(

!"#$%&')

*#+,%'-%./%,

!"#$%&'0

!"#$%&'01(

!!!

"#$%&'()#*&

+,#-&. /0.%1

()#*&'2&)3&%

+,#-&.'2&)3&%

!,2&'3"#$%&'+442%&

5"63%,'+4'3"#$%&2

3"#$%&'278%

!"!#$%

!!!

)

9

:

3"#$%&1278%!"!#$%

(;

5"63%,'+4'<7&2

5"63%,'+4'%5&,7%2

3"#$%&'278%

6,"'75/%=

)

9

:

(;

>5&,?'(

>5&,?')

!"#$%&'-%./%,

>5&,?'@

>5&,?'@1(

!!!

5"63%,'+4'<7&2

&?A%

2#+,%

A,%B7+"2'7/=

)

;)

;;

;C

5%=&'7/= D)

3E+#$'.//,%22 D9

Figure 3: Score cache disk layout

3.2. Block log disk layout

Unlike Venti, Vidi’s block log (Figure 4) is stored in a local file that is allowed to grow and
shrink. The block log is not divided into arenas. The block log file consists of a header, list of
data blocks and a trailer. The header contains a magic number and the “start” pointer. Each
block contains a magic number, block’s type, size and content. The log’s trailer contains the
“read” and “write” pointers. Vidi doesn’t compress the block contents.

3.3. Using Vidi with Vac

When Vac is not used in an incremental mode, it converts the file system into a stream of
“write” operations. Because Vac doesn’t try to retrieve data from Venti, it would work well
when connecting to Vidi even when disconnected. As Vidi doesn’t always contact the Venti
server even when connected, Vac’s performance is improved even in non-incremental mode.

4. Performance results

The performance of the prototype is evaluated with different score cache and RAM cache sizes.
The Venti server is running on a Linux server with 16 CPUs, 32GB RAM and 2.7TB arena
space. The Vidi server is running on another Linux server with 2 CPUs and 2GB of RAM.
Both servers are connected to the network with a Gigabit Ethernet card, but not to the same
Ethernet switch and are 3 hops apart. The tests were performed using the vac program from
Plan9 from User Space on a directory containing 117347 files with total size 11.38 GBytes.
Before the tests were run, the directory was stored to the Venti server.

28

!"#$%&'

!"#$%&(

!"#$%&)*+,*-

!"#$%&.

!"#$%&./'

!!!

"#$%&'($) "#$%&'*+,-+.

01+-1&+,,-*00

2"#$%&3*+,*-&4+56$ (

7

068*

19:*

2"#$%&4+56$

,+1+

(

7

;

'<

"#$%&

!"#$%&=-+6"*-

"#$%&'/.,0#+.

-*+,&+,,-*00

2"#$%&1-+6"*-&4+56$ (

7

>-61*&+,,-*00 '<

Figure 4: Block log disk layout

Figure 5 shows results running Vac with 64 Kilobyte buckets. Keeping information for the
score recency leads to changes in the score cache even when the score is already present in the
cache. This leads to higher number of operations to the local disk compared with the standard
Venti which doesn’t keep recency information per score. Having too small score cache leads to
increased number of missed scores and even though the completion time is lower, Vidi stores
an unacceptably high number of blocks (50 percent) even though they already are present in
the central Venti server. Using too large score cache increases the I/O operations to the score
cache too much decreasing the performance. The best results are achieved when the score

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 50 100 150 200

T
im

e
 (

s
)

Score Cache on Disk (MB)

Score cache in RAM
10MB
25MB

100MB
direct

direct incremental

(a) Time to archive with empty score cache

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 50 100 150 200

T
im

e
 (

s
)

Score Cache on Disk (MB)

Score cache in RAM
10MB
25MB

100MB
direct

direct incremental

(b) Time to archive with populated score cache

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 50 100 150 200

T
im

e
 (

s
)

Score Cache on Disk (MB)

Score cache in RAM
10MB
25MB

100MB
direct

direct incremental

(c) Time to archive when disconnected

Score Cache Cache Utilization Block log
Size (MB) (percent) size (MB)

25 100 6339
50 100 876
75 73 12.37

100 53 12.37
200 26 12.37

(d) Score cache utilization and block log size

Figure 5: Results using Vidi with 64 Kilobyte buckets.

29

cache is about 75 percent full. In that case, Vidi uses 0.74 percent of the storage a local Venti
would use to archive the file system with performance comparable with the one achieved when
using Vac in incremental archive mode.

Tests performed with smaller bucket size show improved performance at the expense of using
more space used by the block log. Using smaller buckets reduces the I/O bandwidth, but the
smaller number of scores in a LRU list increases the chance of score miss.

5. Conclusion and Future Work

Vidi allows standard Venti tools to be used for archiving when the central Venti server is
not available. It caches locally the scores of the most recently written blocks. Vidi provides
reasonable performance using a fraction of the disk space that other alternatives would use.

An interesting future work would be to extend Vidi to cache not only scores, but also the
content of the blocks, allowing partial access to the archived file system. Experimentation
with caching techniques other than LRU (ARC, MQ, etc.) could improve the hit ratio on both
score and block cache further improving the performance and the user experience as a whole.

The implementation could be further improved by compressing the blocks in the local block
log, and improving the I/O operations to the score cache.

References

[1] Secure Hash Standard. National Institute of Standards and Technology, Washington, 2002.
Federal Information Processing Standard 180-2.

[2] Russ Cox. Plan9 from user space. http://swtch.com/plan9port/.

[3] Eric Van Hensbergen and Latchesar Ionkov. The v9fs project. http://v9fs.sourceforge.net.

[4] AT&T Bell Laboratories. Introduction to the 9p protocol. Plan 9 Programmer’s Manual,
3, 2000.

[5] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard Trickey,
and Phil Winterbottom. Plan 9 from Bell Labs. Computing Systems, 8(3):221–254,
Summer 1995.

[6] Sean Quinlan. A cached WORM file system. Software — Practice and Experience,
21(12):1289–1299, 1991.

[7] Sean Quinlan and Sean Dorward. Venti: A new approach to archival data storage. In
FAST ‘02: Proceedings of the 1st USENIX Conference on File and Storage Technologies,
page 7, Berkeley, CA, USA, 2002. USENIX Association.

30

Inferno DS: Inferno port to the Nintendo DS

Salva Peiró
Valencia, Spain

saoret.one@gmail.com

October 12, 2008

Abstract

The Inferno DS port began in 2007 as a one-man Google Summer of Code project, to
make Inferno available on a standard, cheap, networked device with graphics and audio.
The GSoC project attracted a small group of developers that is completing the port, to
make the device fully usable for application development. This paper describes the current
status of the port. It reviews the background and the motivation for the work, provides
a DS hardware overview, and discusses the kernel development process, focusing on the
setup and development of Dis applications running on the DS. There is plenty of scope
for futher work. We hope to encourage others to contribute to the project.

1. Background

The DS [1] native port of Inferno [2] was started by Noah Evans for GSoC 2007 [3]. At the the
end of GSoC the port was starting to be usable under the no$gba [4] emulator, enough that
it was possible to interact with Inferno's window manager wm(1) 1 using the emulated touch
screen. Inferno also booted and ran on a real DS, but the touch screen did not work. In spite of
its limitations the port provided enough basic functionality to encourage further development.
The GSoC project sparked the interest of a small group of enthusiasts to �nish the port and
begin work on new applications suitable for the platform. It is an Open Source project, hosted
on Google Code, and supported by discussions in Google Groups and on IRC.

1.1. Motivation

The current project shares the motivation stated by Noah Evans on his GSoC 2007 application
[3]: by using cheap and easily accessible hardware, native Inferno on the DS would show a
wide range of users the power and possibilities of the Inferno and Plan 9 approach to building
distributed systems. On other platforms, instead of a native port, we might consider hosting
Inferno under an existing system, but we found that emu(1) on DSLinux [5] was not viable as
when running with graphics the program crashed due to out of memory errors. There was thus
increased curiosity about the advantages of a native port for DS software development. For
instance, a proper operating system would overcome limitations of some homebrew programs
for the DS, such as no multi-tasking, and it would give the bene�ts of having a coherent
system with a standard set of tools. Furthermore, it would provide a �real� testbed for Limbo
applications, including those developed in the inferno-lab [6]. The DS is particularly interesting
as an Inferno target because it provides WiFi networking, allowing us to have fun with multi-user
games and applications, including Voice-over-IP and jukebox programs using its audio input and
output.

2. DS Overview

The native port had to address unusual aspects of the Nintendo DS hardware, so some knowl-
edge of that is helpful. What follows is a small overview of the DS hardware organized in three
subsections: the system processors, its inter-communication mechanisms, and last the built-in
devices (and expansions).

1 the notation page(section), refers to Inferno manual pages [14]

31

2.1. Processors

The DS has two 32-bit ARM [7] processors: an ARM946E-S running at 66MHz that is in charge
of the video and performs the main computations; and an ARM7TDMI at 33MHz that acts as
a slave to deal with the remaining devices, including wireless, audio, touch screen, and power
management.

The system is shipped with the following internal memory:

• 4096KB Main ARM9 RAM

• 96KB Main ARM7 WRAM (64Kb + 32K mappable to NDS7 or NDS9)

• 60KB TCM/Cache (TCM: 16K Data, 32K Code) (Cache: 4K Data, 8K Code)

• 656KB Video RAM (usable as BG/OBJ/2D/3D/Palette/Texture/WRAM memory)

• 256KB Firmware FLASH (512KB in iQue variant)

• 36KB BIOS ROM (4K NDS9, 16K NDS7, 16K GBA)

For more details see [8][GBATEK, NDS Overview].

2.2. Communication

The two processors in the DS can communicate using combinations of the following methods:

• Shared memory: The 4Mb of ARM9 RAM starting at 0x02000000 can be shared by both
processors. It can be con�gured so that one cpu can be given priority over the other when
they access the memory concurrently.

• Hardware FIFOs: The DS FIFO controller allows the processors to exchange 32 bit values.
It allows full-duplex communication, where each cpu has a destination queue that stores
the values sent by the other cpu, and interrupts notify the appropriate cpu about queue
activity.

This mechanism is crucial as it allows sending messages to request actions. This is used
for example to read and write the real-time clock, obtain the touch coordinates, perform
WiFi tasks, and request audio samples to be played or recorded to the ARM7 cpu.

• Sync interrupt: The Sync IRQ is a simple mechanism that allows one cpu (`local') to
generate an IRQ to the other (`remote') cpu. We can use that to emulate WiFi receiver
interrupts: when the ARM7 detects when a packet has been received it informs the ARM9
using Sync.

Given that accessing shared memory generates wait states to the cpu with less priority, it must
be used with care. It works well in combination with FIFOs, by passing FIFO messages with
pointers to shared memory. This is analogous to passing parameters by value or by reference.

See [8][GBATEK, DS Inter Process Communication (IPC)] for a more detailed description.

2.3. Devices

The Nintendo DS has the following built-in devices:

• Video: There are two 3-inch backlit LCD screens, each 256x192 pixels, with 18bit color
depth. Each screen has a dedicated 2D video engine, and there is one 3D video engine
that can be assigned to either screen.

• Sound: There are 16 sound channels (16x PCM8/PCM16/IMA-ADPCM, 6x PSG-Wave,
2x PSG-Noise). Output can be directed either to built-in stereo speakers, or to a head-
phone socket. Input can come either from a built-in microphone, or a microphone socket. 32

• Controls: A user interacts with the DS through a gamepad and a touch screen. The
gamepad provides 4 direction keys plus 8 buttons, and the touch screen on the lower
LCD screen can be used as a pointing device.

• Networking: WiFi IEEE802.11b wireless networking is provided by the RF2958 (aka
RF9008) chip from RFMD. The main drawback is that there is no documentation from
the manufacturer about its interfacing and programming. All that is known was reverse
engineered by other projects. That information is gathered in [8][GBATEK, DS Wireless
Communications] and also in the dswi� project and DSLinux [5]

• Specials: Additional devices include: a built-in real time clock, power managment de-
vice, hardware divide and square root functions and the ARM CP15 System Control
Coprocessor (controlling cache, tcm, pu, bist, etc.)

• External Memory: There are two available slots: NDS slot (slot-1) and GBA slot (slot-2),
which are the preferred way to plug in expansion cards and other devices. The slots are
commonly used to provide storage on SD/TF cards. There are, however, other devices
such as Dserial, CPLDStarter or Xport [9], which provide UART, MIDI, USB and
standard digital I/O interfaces together with CPLDs or FPGAs.

see [8][GBATEK, NDS Hardware Programming].

3. DS Port

This section describes the idiosyncrasies of the DS port, in particular those related to the setup,
kernel and application development.

3.1. Environment

The development environment is the default shipped with Inferno. The compiler used is
5{a,c,l}, which forms part of the Inferno and Plan 9 compiler suite [11]. It is used to build
the ARM [12] binaries for both the ARM7 and ARM9 cpus, together with the companion tools:
mk, acid, ar, nm, size, etc. which are used for building, debugging and examining the
resulting binaries.

The only special tool required is ndstool [10] which generates a bootable image to be launched
by the NDS loader running on the DS. The image contains everything required to describe how
to boot the code, which includes the ARM7 and ARM9 binaries and their corresponding load
addresses and entrypoints.

3.2. DS kernels

The Inferno DS port follows the usual pattern for a port of native Inferno to a new platform
for an already-supported processor. Much of the code of the Inferno native kernel is platform-
independent, including the IP stack. The Dis interpreter and built-in Limbo modules are also
platform-independent. That platform-independent code only needs to be compiled, which is
done automatically by a mkfile. A relatively small amount of platform-speci�c code must be
written. The DS port shares much of the ARM-speci�c code with the other ARM ports of
Inferno, including the `on the �y' compiler (JIT) for Dis for the ARM processor. There are
existing ports of Inferno to the ARM, which have been used both as a source of ideas and
code. Inferno's earlier port to the iPAQ is the closest existing platform to the DS: both have
touch screens, storage, audio and wireless networking, The underlying hardware is completely
di�erent, however, and the DS often looks like a small brother of the iPAQ: a slower 66 Mhz
CPU clock, only 4 Mb of available RAM, small LCD displays and reduced wireless capabilities.

One of the �rst things to address in the port was how to use the two processors. The ARM9
cpu has 4 Mb of RAM, which permits it to run an Inferno kernel, but the slower ARM7 has only
access to 64 Kb or EWRAM (exclusive RAM). Given this memory limitation the ARM7 cannot
sensibly run an Inferno kernel. Instead it runs specialised code that manages the hardware
devices assigned to the ARM7. The ARM7 kernel is interrupt driven. During its initialisation
phase, it sets device interrupts, and con�gures the buttons, touch screen, FIFOs, and the devices
on the SPI. It then switches to a low-power mode, where it endlessly waits for interrupts to
wake it. The kernel currently has 2,630 lines of C code, over half of that in its WiFi interface,
and 70 lines of assembly code.

33

The ARM9 runs the full Inferno kernel, and provides devices like pointer(3), ether(3), rtc(3),
audio(3), etc. About 6,500 lines of C code and 310 lines of assembly code is speci�c to
either the ARM processor or the DS platform. Most of that code is in device drivers. The
implementation of the device drivers is unusual: because of the division of work between the
processors, the drivers must access and control many of the physical devices via the ARM7,
and we discuss that next.

3.3. Communication: FIFOs IPC

To avoid con�icts that would arise if sharing the hardware devices between cpus, each device is
assigned exclusively to one cpu or the other. For example, the Serial Peripheral Interface (SPI)
is owned by the ARM7. Many of the peripherals are accessed through SPI, including touch
screen, WiFi, rtc, �rmware, power management and audio. The LCD hardware by contrast is
owned by the ARM9. Consequently, the ARM9 cannot directly drive the audio device, nor can
the ARM7 directly display on the screen for debugging.

To overcome this, we use the interprocessor communication mechanisms listed above � FIFOs
and shared memory � to implement a simple messaging protocol that allows one cpu to access
devices owned by the other. It is a Remote Procedure Call protocol: each message is associated
at the receiving cpu with a function that performs the work requested by the message. For
simplicity the function and its arguments are encoded into a 32 bit message as follows:

msg[32] := type[2] | subtype[4] | data[26], where
field[n] refers to a field of n bits of length

type[2] := 00: System, 01: Wifi, 10: Audio, 11: reserved.
subtype[4] := 2^4 = 16 type specific sub-messages.
data[26] := data/parameters field of the message.

The encoding was chosen to have a notation that was easy to read in the calling code, yet
accommodate all the data to be exchanged between the cpus:

type[2] is used to have messages organised in 4 bit types: System, Wi�, Audio and a Reserved
type.

subtype[4] is used to further qualify the message type.

For example, given message type[2] = Wifi actions to be performed include initialising
the WiFi controller, setting the WiFi authentication parameters, and preparing to send
or receive a packet. Those and the other operations required can all be encoded using
the 16 available message subtypes.

data[26] the data �eld is just big enough to allow passing of pointers into the 4Mbyte shared
memory. (This will have to be revised when using memory expansions @ 0x08000000, 16
Mb)

The protocol has a simple implementation. For instance, here is the low-level non-blocking
FIFO put function:

int
nbfifoput(ulong cmd, ulong data)
{

if(FIFOREG->ctl & FifoTfull)
return 0;

FIFOREG->send = (data<<Fcmdlen|cmd);
return 1;

}

Here is an example of its use, extracted from devrtc.c, executed by the ARM9 side to read the
ARM7 RTC:

34

ulong secs;
...
nbfifoput(F9TSystem|F9Sysrrtc, (ulong)&secs);

Because the hardware interface to the FIFO is the same for each processor, similar code can
be used by the the ARM7 in the other direction, for instance to send a string to the ARM9 to
print on the LCD. (The code is not identical because the ARM9 kernel environment includes
scheduling.)

The interrupt-driven part of the FIFO driver is also straightforward. An extract is shown below
to give the �avour:

static void
fifotxintr(Ureg*, void*)
{

if(FIFOREG->ctl & FifoTfull)
return;

wakeup(&putr);
intrclear(FSENDbit, 0);

}

static void
fiforxintr(Ureg*, void*)
{

ulong v;
while(!(FIFOREG->ctl & FifoRempty)) {

v = FIFOREG->recv;
fiforecv(v);

}
intrclear(FRECVbit, 0);

}

static void
fifoinit(void)
{

FIFOREG->ctl = (FifoTirq|FifoRirq|Fifoenable|FifoTflush);
intrenable(0, FSENDbit, fifotxintr, nil, "txintr");
intrenable(0, FRECVbit, fiforxintr, nil, "rxintr");

}

Here fiforxintr is executed when an message receive IRQ is triggered, then the FIFO is
examined to read the message, which is passed to fiforecv which knows the encoding of the
messages, and invokes the corresponding function associated with each message.

3.4. Graphics

The DS has two LCD screens, but the draw(3) device currently provides access only to the lower
screen, because it is the only touch screen in the DS, and mapping touch screen coordinates to
screen coordinates (pixels) makes obvious sense to a user: touching the screen refers to that
point on the screen.

The DS port could also draw on the upper screen, but it will take some experimentation
to determine how to best use both screens so the result still makes sense to both user and
programmer. For example, although Limbo's draw(2) does not require that everything drawn
be accessible through /dev/pointer, existing interactive applications e�ectively assume that.

One interesting alternative is to use the touch screen coordinates as relative instead of absolute:
this would provide access to both screens, and visual feedback can be provided by a software
cursor.

3.5. Memory

Having 4 Mb of RAM limits the programs that can be run. To overcome this memory limitation,
it is possible to use slot-2 memory expansions; the expansions can add between 8 Mb and 32

35

Mb of RAM, Unfortunately, owing to the slot-2 bus width it can only perform 32-bit and 16-bit
writes; when an 8-bit write is performed it results in garbage written to memory.

This problem is circumvented in DSLinux [5] by modifying the compiler to replace strb in-
structions with swpb, with appropriate changes to surrounding code. We might be able to do
the same in the Inferno loader 5l (since that generates the �nal ARM code), but failing that,
make a similar change to the compiler 5c.

3.6. DLDI

The Dynamically Linked Disc Interface (DLDI)[16], is a widespread way of accessing storage
SD/TF cards. It provides the IO functions required to access storage independently of which
boot card is being used. When a file.nds �le is booted, the boot loader auto-patches the
DLDI header contained inside the file.file with the speci�c IO functions for this card.

This has been partially implemented in the DS port, where the devdldi.c �le provides a
suitable DLDIhdr, which is properly recognised and patched by the boot loader.

The problem with this approach is that the DLDI patched code (arm-elf) contains instructions
which modify a critical register without restoring it afterwards, which would panic the kernel.

For that reason, at this moment the DLDIhdr is only used to detect the card type and then
select one of a set of compiled-in drivers, one for each type of card.

3.7. Application

As usual for Inferno ports, the existing Dis �les for applications run unchanged (subject to
available resources). At the application level the DS has some features that make it interesting.

User input comes from various buttons, and the touch screen. Graphical output is on two small
LCD displays. As noted above, having two displays but only one with a touch screen presents a
di�erent graphical interface from the one that applications (and users) expect. This is currently
the object of experimentation in the inferno-lab [6].

Whichever approach is chosen, being able to run Limbo applications in the full Inferno environ-
ment on the DS already opens the �eld for interesting applications, which combine graphics,
touch, networking and audio. This can include games, VoIP, music, MIDI synths, and other
more common uses, such as connecting to remote systems with cpu(1), and managing them
from the DS, or accessing remote resources using the styx(5) protocol.

3.8. Setting up the development environment

It is easy to set up Inferno to run on the Nintendo DS. An Inferno kernel that can be distributed
as an .nds image is available for download from the Inferno DS project site [1]. A standard
Inferno distribution is placed on an SD/TF card, and the .nds kernel image can be copied to
an SD/TF card, to be booted by the NDS loader.

This kernel provides access to the underlying hardware through Inferno's normal device inter-
face, namely through a �le system interface that is used by applications to access most kernel
services. The kernel includes the normal Inferno interfaces for draw(3), pointer(3), ether(3)
and audio(3), and a DS-speci�c devdldi that provides storage access to SD/TF cards.

With all this, the development of applications consists of the following steps:

1. setup Inferno emu on a development host: where the applications can be coded, compiled
and tested, see [13] for more details.

2. test applications on a DS emulator (optional): like no$gba [4] or desmume.

3. transfer applications (.dis �les) to SD/TF card: to be launched after booting the Inferno
DS kernel.

4. Conclusions

The main conclusion extracted during the development of the port has been how the careful
design and implementation of the whole Inferno system have made the task of developing this
port easier. Most of the kernel code is portable, including the whole of the Dis virtual machine,
and just needs to be compiled. The platform-speci�c kernel code for any native port is fairly

36

small (on the order of a few thousand lines). There was already existing support for the ARM
processor, and a few sample ports to ARM platforms to act as models. The device driver
interface is simple and modular.

This has had also an e�ect on the tasks of locating and �xing errors, and introducing new
functionality like input, storage, networking and audio which have become easier. Emulators
are still of great help to save test time.

The bene�ts of the Inferno design [2] will be also noticed when developing Limbo applications
for the DS, as this area has been less used and tested during the development of the port.

5. Future work

This project is work in progress, and signi�cant things remain to do. There are undoubtedly
places where a simple-minded implementation just to get things going needs to be redone. For
example, the graphics implementation is being extended to allow Inferno to take advantage of
both LCD screens, and the audio driver is being reworked to improve playing and recording
quality.

One big task is to �nish and test the wireless networking code. The DS will be much more
interesting once it can communicate with other devices, because Inferno comes into its own in
a networked environment. That will allow it to access �le systems and devices provided by an
emu(1) instance running hosted elsewhere. We can also speed development by booting remote
kernels. The wireless provides only WEP and open modes at 2.0 Mbps. Once the WiFi code
is fully working, it will be interesting to see how the relatively low data rate (in current terms)
a�ects the use of the styx(5) protocol to access remote �lesystems.

As low-level device support is completed, e�ort will shift from the kernel side to the applications
side. Indeed, that is already happening with the inferno-lab [6] experiments with the Mux
interface and with the QUONG/HexInput [15] keyboard to ease interaction with the system
through the touch screen.

Please join in! [1]

References

[1] Noah Evans, Salva Peiró, Mechiel Lukkien �Inferno DS: Native Inferno Kernel for the
Nintendo DS�. http://code.google.com/p/inferno-ds/.

[2] Sean Dorward, Rob Pike, David Leo Presotto, Dennis M. Ritchie, Howard Trickey, Phil Win-
terbottom �The Inferno Operating System�. Computing Science Research Center, Lucent
Technologies, Bell Labs, Murray Hill, New Jersey USA http://www.vitanuova.com/inferno.
http://code.google.com/p/inferno-os/.

[3] Noah Evans, mentored by Charles Forsyth, �Inferno Port to the Nintendo DS�. Google
Summer of Code 2007, http://code.google.com/soc/2007/p9/about.html.

[4] Martin Korth, �no$gba emulator debugger version�. http://nocash.emubase.de/gba-
dev.htm.

[5] Pepsiman, Amadeus and others, �DSLinux: port of uCLinux to the Nintendo DS�.
http://www.dslinux.org.

[6] Caerwyn Jones & co, �Inferno Programmers Notebook�. http://caerwyn.com/ipn,
http://code.google.com/p/inferno-lab

[7] ARM (Advanced Risc Machines), �ARM7TDMI (rev r4p3) Technical Reference Manual�.
ARM Limited, http://www.arm.com/documentation/ARMProcessorCores.

[8] Martin Korth, �GBATEK: Gameboy Advance / Nintendo DS Technical Info�.
http://nocash.emubase.de/gbatek.txt. http://nocash.emubase.de/gbatek.htm.

[9] Charmed Labs, �Xport�. http://www.drunkencoders.org/reviews.php.

[10] DarkFader, natrium42, WinterMute, �ndstool Devkitpro: toolchains for homebrew game
development�. http://www.devkitpro.org/

[11] Ken Thompson, �Plan 9 C Compilers�. Bell Laboratories, Murray Hill, New Jersey 07974,
USA. http://plan9.bell-labs.com/sys/doc/compiler.html.

37

http://code.google.com/p/inferno-ds/
http://www.vitanuova.com/inferno
http://code.google.com/p/inferno-os/
http://code.google.com/soc/2007/p9/about.html
http://nocash.emubase.de/gba-dev.htm
http://nocash.emubase.de/gba-dev.htm
http://www.dslinux.org
http://caerwyn.com/ipn
http://code.google.com/p/inferno-lab
http://www.arm.com/documentation/ARMProcessorCores
http://nocash.emubase.de/gbatek.txt
http://nocash.emubase.de/gbatek.htm
http://www.drunkencoders.org/reviews.php
http://www.devkitpro.org/
http://plan9.bell-labs.com/sys/doc/compiler.html

[12] David Seal, �The ARM Architecture Reference Manual�, 2nd edition. Addison-Wesley
Longman Publishing Co. http://www.arm.com/documentation/books.html.

[13] Phillip Stanley-Marbell, �Inferno Programming with Limbo�. John Wiley & Sons 2003,
http://www.gemusehaken.org/ipwl/.

[14] �The Inferno Manual�. http://www.vitanuova.com/inferno/man/.

[15] http://www.strout.net/info/ideas/hexinput.html.

[16] Michael "Chishm" Chisholm, Dynamically Linked Disc Interface.
http://dldi.drunkencoders.com/index.php.

38

http://www.arm.com/documentation/books.html
http://www.gemusehaken.org/ipwl/
http://www.vitanuova.com/inferno/man/
http://www.strout.net/info/ideas/hexinput.html
http://dldi.drunkencoders.com/index.php

9P For Embedded Devices

Bruce Ellis
Tiger Ellis

Club Birriga
Bellevue Hill, NSW, Australia
brucee@chunder.com

ABSTRACT

9P has proved over the years to be a valuable and malleable file system
protocol. Furthermore, as is it embraced by Plan9, it is more than a con
venient protocol for interaction between disparate devices. Indeed Plan9
relies on it.

The protocol can be used to encapsulate control of an embedded device,
which simply serves a 9P file system. However, even though 9P is very
lightweight, it can be adapted to be more frugal on device resources.
This is important on very small devices (FPGAs) where a full 9P imple
mentation can consume most of the available gates.

We address this issue as a filesystem (embedfs) on the embedded
machine�s gateway Plan9 machine. We provide implementation and con
figuration details targeted at the Casella Digital Audio device.

1. Introduction

9P filesystems are used for diverse and often unexpected purposes. You need only look
at upas [ref], fossil [ref], and ftpfs(1). Most are served by user-level processes,
the kernel providing the necessary multiplexing and presenting physical devices as 9p
servers. Remote devices are accessed seamlessly via whatever connection protocol is
appropriate to the target. Typically this a common service, like 9fs, using a TCP con
nection. It can easily be a specialized server on an embedded device connecting via
USB, serial, raw ether, etc.

A small embedded device may not have enough resources to provide a full 9P service.
The resources that may be lacking include buffer space, outstanding request queue
space; and of major concern sufficient silicon for handling the full protocol. Our inten
tion is to provide a a file system which acts as an interface to a device implementing a
(configurable) subset of 9P, seamlessly - respecting the integrity of the model.

Arguably a filesystem tailored to a specific device with a custom protocol is a more effi
cient use of cycles. We instead embrace a reuseable, respectable, configurable model
and existing code - a more efficient use of brain cycles.

2. An Embedded File System Interface

The interface is implemented using lib9p [ref], which provides some clear optimiza
tions. (Familiarity with the 9P protocol is assumed in this paper for brevity.) It is well
structured and malleable.

Given the disclaimer we will state a result for a small embedded device, which has a very
fixed structure and limited resources. This could easily be the conclusion - except there

39

is more to tell.

This is what Casella looks like:

% cd /n/casella; ls -l
--rw-rw-rw- M 324 casella casella 0 Aug 26 22:02 audioctl
---w--w--w- M 324 casella casella 0 Aug 26 22:02 audioin
--r--r--r-- M 324 casella casella 0 Aug 26 22:02 audioout
--rw-rw-rw- M 324 casella casella 0 Aug 26 22:02 ctl
--rw-rw-rw- M 324 casella casella 0 Aug 26 22:02 irom
--rw-rw-rw- M 324 casella casella 0 Aug 26 22:02 midictl
---w--w--w- M 324 casella casella 0 Aug 26 22:02 midiin
--r--r--r-- M 324 casella casella 0 Aug 26 22:02 midiout__

__

The directory served is flat with a constant map between name and stat info (including
Qids). This information is loaded by embedfs from a configuration file.

Enumerating the 9P Tmesgs served by embedfs:

Tversion
lib9p handles this message.

Tauth
lib9p user auth() function handles this. Usually no authentication is required,
access is managed by permissions on the srv file. It seems unnecessary to repli
cate the natural plan9 access mechanism.

Tflush
Passed onto the device, held by the server, or even discarded.

Tattach
Returns the root Qid.

Twalk
Returns the appropriate Qid.

Topen
Returns the appropriate Qid, and a suitable iounit. Informs the device if appro
priate.

Tcreate
Eperm.

Tread, Twrite
Passed onto the device.

Tclunk
lib9p handles this message. User function destroyfid() informs the device
if appropriate.

Tremove
Eperm.

Tstat
lib9p user stat() function handles this (based on configuration data).

Twstat
Eperm.

Note that the communication with the device can (and does) use a subset of 9p (specifi
cally: open, clunk, read, and write). In fact the device need only support read
and write.

40

3. A Closer Look

The result presented above is readily implemented using 9pfile(2) - the Tree and
the collection of Files are fixed once the configuration is loaded, the communication
with the device uses fcall(2). The device requirements are small - storage and logic
fall into "a small chunk of the device" category. So what�s up? First we�ll look at
improvements to this implementation for a small, simple, device (casella) and then
examine enhancements for more capable devices.

3.1. iounit Bottleneck

The high bandwidth files, audioin, audioout, and irom, have small on-chip
buffers, so the obvious thing is to reflect this in the returned iounit. This has a very
adverse effect upstream as a read of 8K will generate an enormous amount of host to
host traffic. If these files are configured as "buffered" we can advertise a large iounit
and handle the large transaction in the server with multiple (local speed) transactions
with the device.

Example: The server receives a Tread request with size of 4K. The device has a 32
byte buffer. The server sends multiple 32 byte Tread requests to the device until one
of a) the 4K buffer is full, b) a short read, or c) an Rerror. Similarly for Twrite.

3.2. Χutstanding Requests

The chip has limited resources for storing outstanding requests. The device architec
ture is such that a restriction of a single request per file is natural and adequate. The
server could simply queue requests per file. It may also wish to gate file opens to effec
tively make each file "exclusive-open with wait rather than error", allowing reads/writes
of an open file to overtake waiting opens. This is particularly handy for control files.
Fids and Tags are handled in the server, translated to device file number for commu
nication with the device.

3.3. The Result

With these modifications the silicon footprint on the device is bounded (always good)
and small in both storage and logic.

4. Enhancements

Casella has strict real-time constraints. Audio input and output are both 176KB/sec.
Midi is much slower but still must not overflow/underflow. A program using embedfs
to control a casella must use multiple outstanding reads and writes to meet these
constraints. A library is provided to encapsulate this. The server uses edf [ref] to guar
antee the device data rates specified in the configuration file.

5. Example Configuration

The configuration file for casella is listed below.

41

#
casella.conf
#
downlink 2M
uplink 2M
iounit 32
buffer 8K
file audioctl 666
file audioin 222 buffered 176K
file audioout 444 buffered 176K
file ctl 666
file irom 666 buffered
file midictl 666
file midiin 222 buffered 3125
file midiout 444 buffered 3125

42

Mrph: a Morphological Analyzer

Noah Evans
noah-e@is.naist.jp

ABSTRACT

Developing tools for Natural Language Processing is hard, requiring
careful tuning of statistical models and data processing optimization. It�s
even harder given the many competing and incompatible tools, encodings
and data sets in use in modern NLP research.

To implement new tools researchers have to reimplement or port
the previous tools, using time for development that could be better spent
doing productive research. There have been attempts to make portable,
flexible low level analysis systems, notably Freeling, that incorporate a
flexible NLP tool chain in a language independent way that can be easily
incorporated into other tools and workflows.

We present a new morphological analyzer, mrph, which attempts to
implement a language independent morphological analyzer both a viable
vehicle for research and the day to day use. The system is divided into
modules, written with native support for utf8 , and uses a shell and pipe
line syntax that is semantically identical across systems. It is also written
in a statically typed language with module support, allowing it to dynami
cally load and discard language resources at will. This allows mrph to
change the processed language on dynamically, giving it potential for
irregular data sets like the web.

Introduction

Mrph is a morphological analyzer written in Limbo for inferno.

A morphological analyzer is a tools for taking a sentence and breaking it up into its
component morphology, a set of terms describing the implicit structure of the sentence.

For instance the sentence:

when tokenized and classified by a morphological analyzer becomes:

43

 2

-
- -
-
-
-
-
- -
-
-
-
- -
-
-
- - -
- -
-

-

This provides an annotation that allows the sentence to be dealt with by the user and do
what the user wants when they want to do greater amounts of research. In the case of
this Japanese sentence is provides the pronounciation, the uninflected form of the verb,
and its inflection type in each column respectively.

This information and annotation provided by the analysis forms the basis for creating
solutions to larger problems in natural language problems, including syntax tree parsing
and anaphora resolution.

Given their importance to other tasks, good morphological analyzers are a foundational
tool for NLP researcher, much other research depends on it. This means that a lot of
effort goes into optimizing the performance and accuracy of different analyzers.

The streaming nature of the morphological analyzer�s task(i.e. a stream of input sen
tences each transformed into a set of moprhological tokens annotated with linguistic
information) coincides nicely with the unix piped workflow, which connects small tools
using pipelines provided by the operating system.

However, despite this natural affinity morphological analyzers are rarely inplemented as
software tools. This happens for a few reasons, primarily one of portability. Given the
importance of morphological analyzers to linguistic analysis and the popularity develop
ers and researchers make special effort to implement the system as a library that can be
used by a larger application or by providing bindings to other scripting languages like
perl and python. This also encourages a style of programming where many types of
functionality independent of the analyzer, like formatting systems and character set han
dling functions are implemented into the analyzer directly.

By trying to shoehorn analyzers into a variety of different operating systems with func
tionality trying to be all things to all users, morphological analyzers typically become
arcane and verbose, making it difficult to add new functionality and change the system
without major changes to the underlying analyzer itself. This makes it very difficult to
support new languages or implement improved analysis systems in preexisting systems,
typically they are reimplemented from scratch.

There have been attempts to deal with this problem, Freeling[cite] but they fall back on
the method of using libraries and overly complicated interprocess communication proto
cols like corba to implement.

44

 3

Goal: A software tool that can be used for research

With these problems we designed mrph with the goal of providing a tool that can reli
ably used for both day to day use as a morphological analyzer for higher level tasks and
be easy to use to advance the state of the art in morphological analyzer research. With
these motivations in mind we set the following goals:

1. develop a well engineered modular analyzer suitable to generalizing its meth
ods. especially one with a set interface. Morphological analyzers typically use
"one-shot" methods[cite], so the ideal way to deal with the system is to generalize
one shots and allow *any* method to deal with it.

Make it possible so that any developer as well as user can add the various parts of
it. A tool for research.

2. engineer a system that would work as part of the inferno/plan 9 "software tools"
ecosystem. giving data in a form that could easily be reparsed using stream trans
form tools similar to awk or sed.

3. choose an interface that allows the user to use unix style goodies, but, at the
same provides sane defaults without configuarability. keep the interface the same
across systems.

Mrph: a software tool for morphological analysis

Mrph was implemented with these goals in mind.

It is structured as a set of modules that works to compose. Mrph takes a different
approach. it is a set of modules the goal is to be able to swap languages
and data on the fly. it uses a system based on tokenization of asian languages.

sacrifices efficincy for that ability to handle words as prefixes. it imple
ments caching manually to allow itself to handle ranges that are much larger.

unlike many morphological analyzers only analyzes unicode.

it also attempts to be multilingual by ignoring traditional language tokenization, using
the approach of asian language analyzers of deciding on possible morphs by doing pre
fix searches. this does stemming and lemmitization and multi word expression valida
tion essentially for free. by ignoring

Interface

Unlike many morphological analyzers mrph is implemented as a "software tool" in the
unix tradition.

linguistic researchers can be traditional researchers, but they typically have a variety of
systems to work on. Given the idiosyncrises of these systems, it is impossible to assume
support for things. to support all possible users people use approaches like Chasen[cite]
or Freeling[cite] developing systems as tools and libraries, allowing the system to be
used as part of a greater monolithic system.

Implementing the analyzer in limbo obviates many of the problems. both in terms of
interface and implementation,

Input

Mrph expects plain utf8 text data as input, now, currently limited to the format of one
sentence per line. It takes Japanese text input and gives you the value of their analysis.

Given that its expected language is utf8 by having native support for the system. Since
inferno supports utf natively both in the programming language and the system inter
face level it makes it possible for mrph to handle any language naturally(except right to
left languages like Arabic and Hebrew which still confound the construction of a simple

45

 4

interface).

This allows mrph to handle any language automatically(potentially, right now it only sup
ports Japanese). interspersed english and Japanese are handled in the same way pro
vided that the input is utf8.

Χutput

The system outputs data in tree paths[cite]. This may seem unnecessary but in the
future the system will support the input of values already in treepath format, allowing
the system to potentially take advantage of higher levels of morphological data when
doing analysis, allowing potential positive feedback loops where annotation is fed back
to the analyzer allowing each level of the linguistic analysis process to have positive
feedback with each other.

N/
PG/
VBT/
NG/
APC/
N/

- -
-
-
-
- -
-
-
- - -
- -
-

-

This sacrifices. some of the readability of the original format, the abbrevation of the
more descriptive version. Maintaining the original format added to much visual clutter
with unicode fonts,

This is not especially pleasing with other fonts.

Pipelines

utf8 also allows for pipeline streaming covered in Thompos et al[cite]. which makes it
possible to use the system with data that is potentially cut up, making it a better soft
ware tool candidate.

because the text that mrph supports can be broken up easily it can support pipelining in
a very natural way. This allows it to be used as the part of a toolchain which builds up to
the solution of a more general problem. In fact the system is meant to be used in
Cocytus[cite] which discuss pipelines and the viability of Inferno as a NLP environment in
greater detail.

However, as mentioned early pipelines are impossible to implement using an operating
systems inherent primitives, which makes it impossible to move analyzers like mrph
between systems because the operating system cannot reasonably be expected to han
dle everything natively.

A great advantage of programming a tool in limbo is that it comes with emu, which
allows the system to be semantically identical across platforms. While other bytecom
piled languages like Java allow programs to behave similarly across platforms they don�t
ensure the same *platform* between different systems, breaking one of the primary
advantages of a portable language. The quirks of each system forces the user to

46

 5

abandon.

Because mrph is a simple software tool running in inferno, it interacts with other tools(in
inferno) using pipelines, allowing it to be without extra features or extraneous interface.
Any text after processing, any character set conversions can be do as pre and post pro
cessing over pipelines, allowing mrph to concentrate on its purpose Morphological anal
ysis.

For example if you wanted to analyze a webpage and wanted all examples of consecu
tive noun phrases.

hget http://www.asahi.com | htmfmt | mrph | readline

Implementation

This section describes the implementation of mrph. It begins by describing the modular
structure of the implementation and the behavior of the main analyzer. It then goes on
to describe the implementation of the original modules for the system and the practical
considerations that went into their construction.

Modular construction

utf8 text stream

Dictionary

Morph

Classifier

List of Morph

The system is implemented as a set of modules which implement the various struc
tures of mrph:

47

 6

Diction Classific Morph

takes a text stream and views the input as a set of prefixes. These prefixes are
then fed to a dictionary which returns the valid morphs. which is then done with
that.

Fundamentally the system is a mapping from text stream -> a set of morphs.

the system does so by taking the prefixes and giving them to a dictionary. it then gives
a constant weight to the undefined and uses that to establish the valid path.

Once the valid path is established then the system is given the proper value. and the
sequence of morphs is printed to standard output.

Separate system into modules

Since the system is taking streams of utf8 text and converting them into morphs.

that is why different morph modules need to have a way of dealing with this.

This allows the system to be easily modified. Your dictionary data structure as long as it
supports prefix searches

the path module just takes a list of possible morphs and works that out itself.

the goal is the keep the modules as separate as possible, so that when any one of the
system is altered it doesn�t change the system itself.

Role of Modules

This separation of the system into modules is not novel, information hiding is part of
any modular system, but this is especially important regarding parts of language.

programs like freeling use a set of files to determine the structure of the system. This
works to a point, but at the same time it is limited to the scope of initial programmer
and adds another level of indirection and complexity which precludes the understanding
of the system itself.

when the user want to change language it�s as simple as compiling a dictionary, set of
paths and morphs for the system.

You want the user to be able to take advantage of the system and put everything
together.

Tokenization

In order to deal with the largest amount of languages with no change in the processing
of the underlying system the system is dealt with in a fashion that maximizes the way
that language is dealt with. Language is viewed as a series o characters rather than
words. word boundaries are determined entirely by the dictionary which determines all
the possible prefixes of the sentence stream that can provide valid words.

This may seem like a waste in whitespace separated languages, where hash based meth
ods on individual words may be more efficient like english but has the advantage of
catching simple multiword expressions like "hard drive" automatically. This does not
catch all the possible multiword expressions possible see Bond et al. [cite] for a list of
the problems of multiword expressions and their detrimental effect for NLP.

This has the effect of punting the tokenization from the hardcoded analyzer itself to the
dictionary and its contents, which are replacable.

48

 7

Using the modules for research

By separating out the modules the system can be optimized in various ways.

The linguistic structure of the values being read is entirely up to the Morph module. The
dictionary and the analyzer itself have no idea of the internal structure of a mrph. The
morph module also includes a string function which allows it to print itself as well. obvi
ating any need for the morph to know the state.

The dictionary

Actual implementation of the modules

All of this work to modularize the system is means nothing if the system is not efficient.
However practical concerns are important as well. The data dealt with the system is
large enough that the system is kept in a large enough size by putting the stuff
together.

the goal should be to solve a large enough subsection of the modules and so on.

The dictionary module

The central problem of implementing a dictionary module is that there can be a huge
amount of words that a system needs to understand. Unkown words are disasterous for
the accuracy of morphological analysis, so any effective morphological analyzer will
require a large dictionary(ours, IPAdic[cite] is 3910000 words) to effectively deal with
language parsed and implemented.

So to do this we need a dictionary structure that is large enough to work with but at the
same time.

There is a huge number of words that work well together.

these are well understood problems of morphological analysis, the traditional method of
solving this is for the system is to simply write the dictionary structure to an mmap�ed
file and let the operating system page in.

however this is inefficient[cite] and non portable, saving processor and memory specific
information to the data file. current morphological analyzers get around this problem by
compiling the structure for an original dictionary file when they are first set up on a sys
tem, but this a suboptimal solution and one that is traditional solved in other ways in
the bell labs style.

We solved the problem by using a layered dictionary.

the main problem is that by not using a hash based data structure we are stuck with a
trie based structure which is not space efficient to begin with. A hash based structure
such as dbm(1) would be better but that would force the system to infer the tokens. by
adopting a prefix based approach the dictionary can assign possible tokens as it goes,
allowing the natural processing of asian languages as well as English.

Does this by implementing a patricia trie with nodes that are kept in various levels.

the central problem is that since everything is prefix based you eventually end up have
to search the entire data structure. if you decompose the dictionary. you can potentially
miss morphs. so the system just uses a hash table where the function is computed for
each word.

this means that the system potentially does lookups in much slower time than a trie.
however because it does this by going through the system. this has potentially poor
behavior and may cause many seeks.

you still fail because if you get to the end you never know where the real end is.

So we go about this by going through the system by

49

 8

Morphs

Likewise by having to store 390,000 keys in a database the system needs to hold the
values stored in those keys. Each morph consists of a part of speech id and a various
values. this means that a morph includes on average about 32 bytes of data(x words + x
values + y somethings).

Also various morphs are much more popular than others. This means that the system
needs to cache them in order to get a very good benefit. The caching for the morph
module is modeled on the subfonts in Plan 9.

The problem is that the dictionary doesn�t know the location of either. The system finds
the Morphs by checking the cache value first. The cache is implemented as a hash table.
anything that exists in the hash are then available. the system keeps an age for each of
the morphs and little used morphs are purged from the system during periodic garbage
collections.

need to keep a list of morphs. that is the problem.

The Paths module

The paths module is relatively simple. it uses a hardcoded limbo array, compiled from
an external matrix file. this establishes the possible transitions from one combination to
another.

The path module is similar to regular morphological analyzers, it contains a conjuction
table which figures out how the paths are connected, it also contains a connection
matrix which keeps track of how the values are connected in the system.

Finally it contains a Lattice which preserves the state of the analyzer, where the value is
in the string, which paths exist and how the paths should be classified.

An easily modifiable tool for research

Data formats

Traditionally morphological analyzers, like Chasen[cite] and Mecab[cite], take the mod
ern unix approach, mmap�ing its data structures to external files and then treating those
files as part of the executable itself.

Data Χrganization

Have three different types.

Morphs, the data.
Dictionary
the matrix.

Morphs

Have to manually figure out the cache types. Morphs typically have a great deal of local
ity. Sam, acme

Morph handling

Plan 9 offers a rich model for caching.

50

 9

mrphs sets of files
sucks in files based on their values.
files ordered according to their commonality.
works in a way similar to

the goal is to avoid mmap a caching system similar to fonts

Disadvantages

Inferno doesn�t really have the set of tools that it needs to be productive for more tools.
Tools like awk are very useful for language processing because they take textual input
divided into fields by white space and allow their easily accumulation and editing.
Inferno�s shell while power is still too verbose for quick and dirty shell pipeline construc
tion.

It can be pretty ugly. Many of the unix conventions came from strictly ascii text which
makes it hard for typographical conventions which are human readable like

/1.NP/2.Word

Which become much harder when they are put into practice using other languages.

Traditional path formats don�t look that bad in greek.

/Μ ᾱ/
/µÌλις εβδοµ¬δα

but characters with large widths and values are much more difficult to visualize easily
using an editor like acme. which prompted moving the data formats to ascii.

Conclusion

Eliminates many of the problems and pitfalls that come from trying to implement a tool
for a software tools system.

Limbo is a great language for doing multilingual programming. By allow the language
itself to use utf8 and integrating it with the system.

Also by working the same way across architectures you don�t need to go through the
same issues that people normally go through to integrate with other tools, especially
languages like Java.

It avoids the problems with C(i.e. people being able to randomly type things) but it lets
the user get the way of doing things right.

No mmaping.

Forces many of the system�s dark corners into the light.

The act of doing this, and making the various formerly implicit or recondite aspects of
the system more accessible to programmers makes the system much more amenable to
experimentation.

The module boundaries are clear.

None of this is specific to limbo per se.

but limbo does provide a way of doing things that encourages well engineered programs
with less complexity.

51

 10

Future work

Inferno�s shell tools are still insufficient. for instance many tricks that work well in unix
i.e. sort | uniq -c don�t work in Inferno.

A morphological analyzer is very nice. Want to experiment with a variety of dictionary
types.

the inferno shell, while general and powerful doesn�t provide a nice environment for
dealing with utf8 tabular output. a utf8 aware "little language" similar to or based on
awk would be ideal.

Inferno really needs a font with complete coverage of the unicode set.

Make the system fully concurrent.

Work on incorporating polymorphism correctly. the amount of private data, breaks the
interface. especially in terms of polymorphism. can include another internal module, but
that adds complexity.

Come up with a way of making tree paths look better when used with a tree path.

[Asahara00] Asahara, M. and Matsumoto, Y., ��Extended models and tools for high-
performance part-of-speech tagger��, Proc. of COLING Saarbrücken, Germany 2000.

[Carreras04fos] Carreras, X. and Chao, I. and Padro, L. and Padro, M., ��Freeling: An
open-source suite of language analyzers�� Proc. of the 4th LREC 2004.

[Sag02] Sag, I.A. and Baldwin, T. and Bond, F. and Copestake, A.A. and Flickinger, D.,
��Multiword Expressions: A Pain in the Neck for NLP�� Proc. of the Third International
Conference on Computational Linguistics and Intelligent Text Processing},

pages={1--15},
year={2002},
publisher={Springer-Verlag London, UK}

52

Semaphores in Plan 9

Sape Mullender

Bell Laboratories

2018 Antwerp, Belgium

Russ Cox*

MIT CSAIL

Cambridge, Massachusetts 02139

1. Introduction

Semaphores are now more than 40 years old. Edsger W. Dijkstra described them in
EWD 74 [Dijkstra, 1965 (in Dutch)]. A semaphore is a non-negative integer with two
operations on it, P and V. The origin of the names P and V is unclear. In EWD 74, Dijk
stra calls semaphores seinpalen (Dutch for signalling posts) and associates V with
verhoog (increment/increase) and P with prolaag, a non-word resembling verlaag
(decrement/decrease). He continues, ‘‘Opm. 2. Vele seinpalen nemen slechts de
waarden 0 en 1 aan. In dat geval fungeert de V−operatie als ‘baanvak vrijgeven’; de P−
operatie, de tentatieve passering, kan slechts voltooid worden, als de betrokken seinpaal
(of seinpalen) op veilig staat en passering impliceert dan een op onveilig zetten.’’
(��Remark 2. Many signals assume only the values 0 and 1. In that case the V-operation
functions as �release block�; the P-operation, the tentative passing, can only be
completed, if the signal (or signals) involved indicates clear, and passing then implies
setting it to stop.��) Thus, it may be that P and V were inspired by the railway terms
passeer (pass) and verlaat (leave).

We discard the railway terminology and use the language of locks: P is semacquire
and V is semrelease. The C declarations are:

int semacquire(long *addr, int block);
long semrelease(long *addr, long count);

Semacquire waits for the semaphore value *addr to become positive and then decre
ments it, returning 1; if the block flag is zero, semacquire returns 0 rather than wait. If
semacquire is interrupted, it returns �1. Semrelease increments the semaphore value by
the specified count.

Plan 9 [Pike et al., 1995] has traditionally used a different synchronization mecha
nism, called rendezvous. Rendezvous is a symmetric mechanism; that is, it does not
assign different roles to the two processes involved. The first process to call ren
dezvous will block until the second does. In contrast, semaphores are an asymmetric
mechanism: the process executing semacquire can block but the process executing

* Now at Google, Mountain View, California 94043

53

semrelease is guaranteed not to. We added semaphores to Plan 9 to provide a way for a
real-time process to wake up another process without running the risk of blocking.
Since then, we have also used semaphores for efficient process wakeup and locking.

2. Hardware primitives

The implementations in this paper assume hardware support for atomic read-modify-
write operations on a single memory location. The fundamental operation is ��compare
and swap,�� which behaves like this C function cas, but executes atomically:

int
cas(long *addr, long old, long new)
{

/* Executes atomically. */
if(*addr != old)

return 0;
*addr = new;
return 1;

}

In one atomic operation, cas checks whether the value *addr is equal to old and, if so,
changes it to new. It returns a flag telling whether it changed *addr.

Of course, cas is not implemented in C. Instead, we must implement it using spe
cial hardware instructions. All modern processors provide a way to implement compare
and swap. The x86 architecture (since the 486) provides a direct compare and swap
instruction, CMPXCHG. Other processors�including the Alpha, ARM, MIPS, and
PowerPC�provide a pair of instructions called load linked (LL) and store conditional (SC).
The LL instruction reads from a memory location, and SC writes to a memory location
only if (1) it was the memory location used in the last LL instruction, and (2) that location
has not been changed since the LL. On those systems, compare and swap can be imple
mented in terms of LL and SC.

The implementations also use an atomic addition operation xadd that atomically
adds to a value in memory, returning the new value. We don�t need additional hardware
support for xadd, since it can be implemented using cas:

long
xadd(long *addr, long delta)
{

long v;

for(;;){
v = *addr;
if(cas(addr, v, v+delta))

return v+delta;
}

}

3. User−space semaphores

We implemented semacquire and semrelease as kernel-provided system calls. For
efficiency, it is useful to have a semaphore implementation that, if there is no con
tention, can run entirely in user space, only falling back on the kernel to handle con
tention. Figure 1 gives the implementation. The user space semaphore, a Usem, con
sists of a user-level semaphore value u and a kernel value k:

54

typedef struct Usem Usem;
struct Usem {

long u;
long k;

};

When u is non-negative, it represents the actual semaphore value. When u is negative,
the semaphore has value zero: acquirers must wait on the kernel semaphore k and
releasers must wake them up.

void
usemacquire(Usem *s)
{

if(xadd(&s−>u, −1) < 0)
while(semacquire(&s−>k, 1) < 0){

/* Interrupted, retry */
}

}

void
usemrelease(Usem *s)
{

if(xadd(&s−>u, 1) <= 0)
semrelease(&s−>k, 1);

}

If the semaphore is uncontended, the xadd in usemacquire will return a non-negative
value, avoiding the kernel call. Similarly, the xadd in usemrelease will return a positive
value, also avoiding the kernel call.

4. Thread Scheduling

In the Plan 9 thread library, a program is made up of a collection of processes sharing
memory. A thread is a coroutine assigned to a particular process. Within a process,
threads schedule cooperatively. Each process manages the threads assigned to it, and
the process schedulers run almost independently. The one exception is that a thread in
one process might go to sleep (for example, waiting on a channel operation) and be
woken up by a thread in a different process. The two processes need a way to coordi
nate, so that if the first has no runnable threads, it can go to sleep in the kernel, and
then the second process can wake it up.

The standard Plan 9 thread library uses rendezvous to coordinate between pro
cesses. The processes share access to each other�s scheduling queues: one process is
manipulating another�s run queue. The processes must also share a flag protected by a
spin lock to coordinate, so that either both processes decide to call rendezvous or nei
ther does.

For the real-time thread library, we wanted to remove as many sources of blocking
as possible, including these locks. We replaced the locked run queue with a non-
blocking array-based implementation of a producer/consumer queue. That implemen
tation is beyond the scope of this paper. After making that change, the only lock
remaining in the scheduler was the one protecting the ��whether to rendezvous�� flag.
To eliminate that one, we replaced the rendezvous with a user-space semaphore count
ing the number of threads on the queue.

55

To wait for a thread to run, the process�s scheduler decrements the semaphore. If
the run queue is empty, the usemacquire will block until it is not. Having done so, it is
guaranteed that there is a thread on the run queue:

// Get next thread to run
static Thread*
runthread(void)
{

Proc *p;

p = thisproc();
usemacquire(&p−>nready);
return qget(&p−>ready);

}

Similarly, to wake up a thread (even one in another process), it suffices to add the
thread to its process�s run queue and then increment the semaphore:

// Wake up thread t to run in its process.
static void
wakeup(Thread *t)
{

Proc *p;

p = t−>p;
qput(&p−>ready, t);
usemrelease(&p−>nready);

}

This implementation removes the need for the flag and the lock; more importantly, the
process executing threadwakeup is guaranteed never to block, because it executes
usemrelease, not usemacquire.

5. Replacing spin locks

The Plan 9 user-level Lock implementation is an adapted version of the one used in
the kernel. A lock is represented by an integer value: 0 is unlocked, non-zero is locked.
A process tries to grab the lock by using a test-and-set instruction to check whether the
value is 0 and, if so, set it to a non-zero value. If the lock is unavailable, the process
loops, trying repeatedly. In a multiprocessor kernel, this is a fine lock implementation:
the lock is held by another processor, which will unlock it soon. In user space, this
implementation has bad interactions with the scheduler: if the lock is held by another
process that has been preempted, spinning for the lock will not accomplish anything.
The user-level lock implementation addresses this by rescheduling itself (with sleep(0))
between attempts after the first thousand unsuccessful attempts. Eventually it backs off
more, sleeping for milliseconds at a time between lock attempts.

We replaced these spin locks with a semaphore-based implementation. Using
semaphores allows the process to tell the kernel exactly what it is waiting for, avoiding
bad interactions with the scheduler like the one above. The semaphore-based imple
mentation represents a lock as two values, a user-level key and a kernel semaphore:

struct Lock
{

long key;
long sem;

};

The key counts the number of processes interested in holding the lock, including the

56

one that does hold it. Thus if key is 0, the lock is unlocked. If key is 1, the lock is held.
If key is larger than 1, the lock is held by one process and there are key�1 processes
waiting to acquire it. Those processes wait on the semaphore sem.

void
lock(Lock *l)
{

if(xadd(&l−>key, 1) == 1)
return; // changed from 0 −> 1: we hold lock

// otherwise wait in kernel
while(semacquire(&l−>sem, 1) < 0){

/* interrupted; try again */
}

}

void
unlock(Lock *l)
{

if(xadd(&l−>key, −1) == 0)
return; // changed from 1 −> 0: no contention

semrelease(&l−>sem, 1);
}

Like the user-level semaphore implementation described above, the lock implementa
tion handles the uncontended case without needing to enter the kernel.

The one significant difference between the user-level semaphores above and the
semaphore-based locks described here is the interpretation of the user-space value.
Plan 9 convention requires that a zeroed Lock structure be an unlocked lock. In con
trast, a zeroed Usem structure is analogous to a locked lock: a usemacquire on a zeroed
Usem will block.

6. Kernel Implementation of Semaphores

Inside the Plan 9 kernel, there are two kinds of locks: the spin lock Lock spins until
the lock is available, and the queuing lock QLock reschedules the current process until
the lock is available. Because accessing user memory might cause a lengthy page fault,
the kernel does not allow a process to hold a Lock while accessing user memory. Since
the semaphore is stored in user memory, then, the obvious implementation is to acquire
a QLock, perform the semaphore operations, and then release it. Unfortunately, this
implementation could cause semrelease to reschedule while acquiring the QLock, negat
ing the main benefit of semaphores for real-time processes. A more complex imple
mentation is needed. This section documents the implementation. It is not necessary
to understand the rest of the paper and can be skipped on first reading.

Each semacquire call records its parameters in a Sema data structure and adds it to
a list of active calls associated with a particular Segment (a shared memory region). The
Sema structure contains a kernel Rendez for use by sleep and wakeup (see [Pike et al.,
1991]), the address, and a waiting flag:

57

struct Sema
{

Rendez;
long *addr;
int waiting;
Sema *next;
Sema *prev;

};

The list is protected by a Lock, which cannot cause the process to reschedule. The
semaphore value *addr is stored in user memory. Thus, we can access the list only
when holding the lock and we can access the semaphore value only when not holding
the lock. The helper functions

void semqueue(Segment *s, long *addr, Sema *p);
void semdequeue(Segment *s, long *addr, Sema *p);
void semwakeup(Segment *s, long *addr, int n);

all manipulate the segment�s list of Sema structures. They acquire the associated Lock,
perform their operations, and release the lock before returning. Semqueue and
semdequeue add p to or remove p from the list. Semwakeup walks the list looking for n
Sema structures with p.waiting set. It clears p.waiting and then wakes up the corre
sponding process.

Using those helper functions, the basic implementation of semacquire and
semrelease is:

int
semacquire(Segment *s, long *addr)
{

Sema phore;

semqueue(s, addr, &phore);
for(;;){

phore.waiting = 1;
if(canacquire(addr))

break;
sleep(&phore, semawoke);

}
semdequeue(s, &phore);
semwakeup(s, addr, 1);
return 1;

}

long
semrelease(Segment *s, long *addr, long n)
{

long v;

v = xadd(addr, n);
semwakeup(s, addr, n);
return v;

}

(This version omits the details associated with returning �1 when interrupted and also
with non-blocking calls.)

Semacquire adds a Sema to the segment�s list and sets phore.waiting. Then it
attempts to acquire the semaphore. If it is unsuccessful, it goes to sleep. To avoid
missed wakeups, sleep calls semawoke before committing to sleeping; semawoke simply

58

checks phore.waiting. Eventually, canacquire returns true, breaking out of the loop.
Then semacquire removes its Sema from the list and returns.

The call to semwakeup at the end of semacquire corrects a subtle race that we
found using Spin. Suppose process A calls semacquire and the semaphore has value 1.
Semacquire queues its Sema and sets phore.waiting, canacquire succeeds (the sema
phore value is now 0), and semacquire breaks out of the loop. Then process B calls
semacquire: it adds itself to the list, fails to acquire the semaphore (the value is 0), and
goes to sleep. Now process C calls semrelease: it increments the semaphore (the value
is now 1) and looks for a single Sema in the list to wake up. It finds A�s, checks that
phore.waiting is set, and then calls the kernel wakeup to wake A. Unfortunately, A
never went to sleep. The wakeup is lost on A, which had already acquired the sema
phore. If A simply removed its Sema from the list and returned, the semaphore value
would be 1 with B still asleep. To account for the possibly lost wakeup, A must trigger
one extra semwakeup as it returns. This avoids the race, at the cost of an unnecessary
(but harmless) wakeup when the race has not happened.

7. Performance

To measure the cost of semaphore synchronization, we wrote a program in which two
processes ping-pong between two semaphores:

Process 1 blocks on the acquisition of Semaphore 1,
Process 2 releases Semaphore 1 and blocks on Semaphore 2,
Process 1 releases Semaphore 2 and blocks on Semaphore 1,

This loop executes a million times. We also timed a program that does two million
acquires and two million releases on a semaphore initialized to two million, so that none
of the calls would block. In both cases, there were a total of four million system calls;
the ping-pong case adds two million context switches. Table 1 gives the results.

time per system call (microseconds)
processor cpus ping−pong semacquire semrelease__

PentiumIII/Xeon, 598 MHz 1 2.18 1.35 1.91
PentiumIII/Xeon, 797 MHz 2 0.887 0.949 1.38
PentiumIV/Xeon, 2196 MHz 4 0.970 1.38 1.84
AMD64, 2201 MHz 2 1.08 0.266 0.326

Table 1 Semaphore system call performance.

time per lock operation (microseconds)
processor cpus spin locks semaphore locks__

PentiumIII/Xeon, 598 MHz 1 5.4 5.4
PentiumIII/Xeon, 797 MHz 2 18.2 5.6
AMD64, 2201 MHz 2 22.6 2.5
PentiumIV/Xeon, 2196 MHz 4 43.8 4.9

Table 2 Performance of spin locks versus semaphore locks.

Next, we looked at lock performance, comparing the conventional Plan 9 locks
from libc to the new ones using semaphores for sleep and wakeup. We ran Doug
McIlroy�s power series program [McIlroy, 1990], which spends almost all its time in
channel communication. The Plan 9 thread library�s channel implementation uses a

59

single global lock to coordinate all channel activity, inducing a large amount of lock con
tention. The application creates a thousand processes and makes 207,631 lock calls.
The number of locks (in the semaphore version) that require waiting (i.e., a semacquire
is done) varies wildly. In 20 runs, the smallest number we saw was 127, the largest was
490, and the average was 288.

Table 2 shows the performance results. Surprisingly, the performance difference
was most pronounced on multiprocessors. Naively, one would expect that spinning
would have some benefit on multiprocessors whereas it could have no benefit on
uniprocessors, but it turns out that spinning without rescheduling (the first 1000 tries)
has no effect on performance. Contention only occurs some 500 or so times, and the
time it takes to spin 500,000 times is in the noise. The difference between uniproces
sors and multiprocessors here is that on uniprocessors, the first sleep(0) will put the
process waiting for the lock at the back of the ready queue so that, by the time it is
scheduled again, the lock will likely be available. On multiprocesssors, contention from
other processes running simultaneously makes yielding less effective. It is also likely
that the repeated atomic read-modify-write instructions, as in the tight loop of the spin
lock, can slow the entire multiprocessor.

The performance of the semaphore-based lock implementation is sometimes much
better, and never noticeably worse, than the spin locks. We will replace the spin lock
implementation in the Plan 9 distribution soon.

8. Comparison with other approaches

Any operating system with cooperating processes must provide an interprocess
synchronization mechanism. It is instructive to contrast the semaphores described here
with mechanisms in other systems.

Many systems�for example, BSD, Mach, OS X, and even System V UNIX�provide
semaphores [Bach, 1986]. In all those systems, semaphores must be explicitly allocated
and deallocated, making them more cumbersome to use than semacquire and
semrelease. Worse, semaphores in those systems occupy a global id space, so that it is
possible to run the system out of semaphores just by running programs that allocate
semaphores but neglect to deallocate them (or crash). The Plan 9 semaphores identify
semaphores by a shared memory location: two processes are talking about the same
semaphore if *addr is the same word of physical memory in both. Further, there is no
kernel-resident semaphore state except when semacquire is blocking. This makes the
semaphore leaks of System V impossible.

Linux provides a lower-level system call named futex [Franke and Russell, 2002].
Futex is essentially ��compare and sleep,�� making it a good match for compare and
swap-based algorithms. Futex also matches processes based on shared physical mem
ory, avoiding the System V leak problem. Because futex only provides ��compare and
sleep�� and ��wakeup,�� futex-based algorithms are required to handle the uncontended
cases in user space, like our user-level semaphore and new lock implementations do.
This makes futex-based implementations efficient; unfortunately, they are also quite
subtle. The original example code distributed with futexes was wrong; a correct version
was only published a year later [Drepper, 2003]. In contrast, semaphores are less gen
eral but easier to understand and to use correctly.

60

References

[Bach, 1986]
M.J. Bach, The Design of the UNIX Operating System, Prentice Hall, 1986

[Dijkstra, 1965]
E.W. Dijkstra, ��Over Seinpalen��, EWD74, 1965.
(http://www.cs.utexas.edu/users/EWD/ewd00xx/EWD74.PDF,
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD00xx/EWD74.html)

[Drepper, 2003]
U. Drepper, ��Futexes are Tricky,�� published online at
http://people.redhat.com/drepper/futex.pdf.

[Franke and Russell, 2002]
��Fuss, Futexes, and Furwocks: Fast Userlevel Locking in Linux,�� Proceedings of the
2002 Ottawa Linux Symposium, Ottawa, Canada, 2002, pp. 479�495.

[Holzmann, 1991]
G.J. Holzmann, Design and Validation of Computer Protocols, Prentice Hall, 1991

[Pike et al., 1991]
R. Pike, D. Presotto, K. Thompson, and G. Holzmann, ��Process sleep and wakeup
on a shared memory multiprocessor,�� Proceedings of the Spring 1991 EurOpen
Conference, Tromsø, Norway, 1991, pp. 161�166.

[Pike et al., 1995]
R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey, P. Winter
bottom, ��Plan 9 from Bell Labs��, Computing Systems, 8(3), Summer 1995, pp.
221�254

[Plan 9, 2000]
Plan 9 Manual, 3rd edition published online at
http://plan9.bell-labs.com/sys/man

61

62

v9fb: A remote framebuffer infrastructure for Linux

Abhishek Kulkarni, Latchesar Ionkov
Los Alamos National Laboratory
{kulkarni,lionkov}@lanl.gov

ABSTRACT

v9fb is a software infrastructure that allows extending framebuffer devices in Linux
over the network by providing an abstraction to them in the form of a filesystem hierarchy.
Framebuffer based graphic devices export a synthetic filesystem which offers a simple and
easy-to-use interface for performing common framebuffer operations. Remote framebuffer
devices could be accessed over the network using the 9P protocol support in Linux. We
describe the infrastructure in detail and review some of the benefits it offers similar to
Plan 9 distributed systems. We discuss the applications of this infrastructure to remotely
display and run interactive applications on a terminal while offloading the computation to
remote servers, and more importantly the flexibility it offers in driving tiled-display walls
by aggregating graphic devices in the network.

1. Motivation

The framebuffer device in Linux offers an abstraction for the graphics hardware so that the
applications using them do not have to bother about the low-level hardware interface to the
device. Since the framebuffer is represented as a character device, a userspace application
can open, read and write to it as a regular file. However, performing several routine graphic
device operations like setting the resolution, fetching the color palette involves making use of
a device-specific ioctl system call. This makes it difficult to export these devices as a network
filesystem hierarchy.

Several remote display protocols for exchanging graphics over the network already exist. The
widely used X window system in Linux is inherently based on a client-server model and imple-
ments the X display protocol to exchange bitmap display content between the client and the
server. It, however, has been a target of much criticism since the early days[2] because of its
overly complex architecture, lack of authentication in the protocol and the limited configura-
bility in its client-server setup. Exporting raw pixel data of the framebuffer device makes it
possible to run a window system on the CPU server. With the recent ongoing work on per-
container device namespaces in the Linux kernel, this infrastructure provides the foundation
for implementing a multiplexing window system similar to Rio [7] for Linux.

Remote display provides a way to interact with geographically distributed resources which are
not within the physical proximity of the user. In addition to being used for remote display,
v9fb can also be used in a few other interesting scenarios where it is not possible to use these
other protocols. For instance, v9fb provides an alternative to monitoring the boot process of
a remote machine in a network. This helps in cluster environments where the nodes are not
equipped with a serial console to check the boot activity remotely. The booting node mounts
the remote framebuffer device exported by the control node and the console of the node is
mapped onto the remote framebuffer.

The main motivation for this infrastructure is to ease the setup of tiled-display walls for
modeling and simulation of scientific data. High-resolution displays are increasingly being used
for visualization of large datasets stored at a central storage facility. Display walls made out
of commodity clusters are closely tied to the display nodes and do not allow for dynamic
configurations. Developing simulation and modeling applications for these high-resolution
tiled display walls is typically done using message passing libraries, new programming models or
software that use proxies to stream graphic commands over the network [11]. v9fb transparently
aggregates the graphic devices in a network and exports a network attached framebuffer thus
allowing greater flexibility in setting up a visualization cluster. Network-centric visualization
is invariably favored since it ensures integrity and security of the data being maintained at

63

a central location [6]. The application program is provided with a single logical view of the
framebuffer device and thus requires no modifications to its code.

2. Introduction

Everything in Plan 9, including the graphics infrastructure, is implemented as a file server
[8]. The file metaphor describes a well-defined interface to interact with all the resources in a
distributed system. This makes it easy to work with the system, keeping it simple yet powerful.
Raster graphics capability in Plan 9 is provided by devices like /dev/draw, /dev/screen and
/dev/window. Along with the input and console devices, Plan 9 offers a highly configurable
and customizable window system that works equally well over the network [7].

Despite considerable efforts, graphics in Linux remains poorly integrated with the rest of the
system. The limitations of running the X server as a super user (root) further allows security
loopholes which could be used to compromise the system. The framebuffer device abstraction
was introduced in Linux starting with kernel version 2.1.107 [12]. The framebuffer device is an
abstraction for the graphics hardware and is responsible for initializing the hardware, determin-
ing the hardware configuration and capabilities, allocating memory for the graphics hardware
and providing common routines to interact with the graphics hardware. The Linux kernel
contains drivers that support several different video hardware devices. The v9fb infrastructure
exports the raw framebuffer memory and its operations as files. This model could be further
extended to support specialized graphics hardware like Graphics Processing Units (GPUs).

The Linux kernel 2.6 offers support for the 9P protocol in the form of loadable kernel modules
[1]. This allows the kernel to communicate with synthetic fileservers using the 9P distributed
resource sharing protocol. v9fb leverages this support to implement a pseudo-framebuffer
device which acts as an in-kernel 9P client that communicates with a framebuffer fileserver.
The framebuffer appears as a regular character device to the applications using it. Every
operation on this device is transparently translated into a 9P message that is sent across to
the remote framebuffer fileserver. v9fb can work on any of the transport mechanisms like TCP
or virtio offered by the 9P2000 implementation in the Linux kernel.

Figure 1: The local framebuffer device is exported by v9fbfs and mounted in the namespace
of a remote CPU server which can draw to the remote device

The synthetic framebuffer filesystem v9fbfs exports a hierarchy that corresponds to various
framebuffer operations which can be executed just by reading off or writing to these files.
This also allows the framebuffer devices to be mounted locally and to interact with them
as if they were local devices as shown in Figure 1. v9fbfs runs on all the display nodes in
a visualization cluster and permits a highly-configurable and dynamic setup in which remote
display devices can be attached or detached to rendering nodes based on their processing load.
v9fb is scalable and can be optimized to support many display devices driving a tiled display
wall with an effective resolution of over million pixels.

Coupled with the XCPU cluster management framework [4], this provides a holistic high-

64

performance visualization environment that is easy to monitor and maintain. It allows a clear
segregation of the display nodes from the render nodes and supports heterogeneous display
hardware setup as a result of the framebuffer abstraction.

In many cases, simple pixel-based remote display can deliver superior performance than the
more complex designs [14] based on other thin-client platform designs. The framebuffer syn-
thetic filesystems allow adding multiple layers above the framebuffer much easier. Compression,
encryption or the support for high-level drawing primitives on top of the framebuffer can be
easily added without affecting the whole model.

Figure 2: Running simulation and modeling programs directly on a hardware-accelerated frame-
buffer in absence of the X11 window system

Hardware-accelerated framebuffer makes use of the GPU operations to render graphics on
the framebuffer device. Several libraries can use the framebuffer as a target to display high-
resolution 2D and 3D graphics. With some of the upcoming changes in the Linux graphics
stack like the changes in DRM (Direct Rendering Manager) and Gallium3D, the new proposed
architecture for 3D graphics drivers, it would be much easier to display 3D hardware-accelerated
graphics on the framebuffer without needing the X server at all as shown in Figure 2. As The
framebuffer can be utilized as a drawing surface by the OpenGL applications, the X server and
many other graphic drawing libraries like Simple DirectMedia Layer (SDL) or General Graphics
Interface (GGI).

The remainder of this paper is organized as follows. In Section 3, we look at some of the
related work on remote visualization systems and network-attached framebuffers. Section 4
offers a detailed design overview of the v9fb infrastructure describing how each component
in the system interacts with the others. The actual implementation details are discussed in
Section 5. We conclude by mentioning some of the future work in the last section.

3. Related Work

A number of existing proprietary solutions for remote visualization are available. Along with
parallel graphics rendering toolkits and cluster management tools, these solutions provide
a complete software environment for large-scale modeling and simulations. HP’s Remote
Graphics software, Sun’s Visualization System and SGI’s Remote Visualization are among many
other proprietary solutions that offer remote access to 2D and 3D graphics. Most of these
remote display solutions primarily rely on VNC which uses the Remote Framebuffer Protocol
(RFB) to exchange display updates over the network.

Tiled display walls usually use pixel-based streaming software to stream the rendered data to
the display nodes or a network attached framebuffer. The Scalable Adaptive Graphics Envi-
ronment (SAGE), developed at the University of Illinois Chicago, is a distributed visualization
architecture specifically designed for decoupling graphics rendering from the graphics display
[5]. SAGE dispatches visualization jobs for rendering to the appropriate resource in a cluster
and streams the resultant pixel data to the remote display. Others, like TeraVision, JuxtaView

65

also provide an infrastructure for remotely displaying imagery in a cluster.

OpenGL toolkits for cluster-based rendering like Chromium [3] or VirtualGL use techniques
like function call interposing to ”snoop” the OpenGL protocol and transfer it over the wire
to the remote proxies in a cluster. This techniques make it difficult to keep up with the
evolving standards and specifications described by OpenGL and add to the overhead in terms
of complexity of the architecture.

IBM’s Scalable Graphics Engine (SGE-3) offers a hardware-based approach to a network-
attached framebuffer[9, 13]. It aggregates the pixel data generated by a rendering cluster to
drive a high-resolution tiled display wall. Several other sort-first rendering systems like WireGL
allow unmodified graphics application to be scaled to work on a high-resolution tiled-display.

4. Design Overview

The v9fb infrastructure consists of the following entities interacting with each other to make
the process of accessing remote framebuffer devices as transparent as possible.

• v9fbfs

• v9fb kernel module

• v9fbaggr

• v9fbmuxfs

v9fbfs is a userspace 9P fileserver that exports a filesystem hierarchy of the framebuffer. The
v9fb kernel module creates a virtual framebuffer device that acts a 9P client translating all
the framebuffer operations into POSIX-like file I/O operations. These calls are forwarded to
either to v9fbfs or v9fbaggr over the 9P protocol. v9fbaggr is another userspace 9P fileserver
which aggregates the framebuffer resources provided by multiple v9fbfs fileservers to export a
logical view of a single large framebuffer. v9fbaggr offers an exactly similar interface as v9fbfs
thus making it seamless to communicate with the v9fb kernel module.

Figure 3: High-performance computing environment for large-scale modeling and simulations
using XCPU and V9FB

Figure 3 shows a typical setup of a rendering cluster environment using XCPU and V9FB.
At the first glance, the control node appears as a potential bottleneck in this environment.
However, the control node only acts as a front-end for submitting jobs. With support for

66

dynamic namespaces offered by XCPU, the aggregated framebuffer device could be mounted
in the namespace of each rendering node which directly writes on to a specific framebuffer of
the display wall.

v9fbmuxfs is a userspace 9P fileserver which is almost similar to v9fbfs. v9fbmuxfs divides a
framebuffer into multiple regions exporting each as a logical framebuffer device. It multiplexes
the access to each of these regions to simultaneously display the framebuffer output from
several clients. Since most modern graphic cards support tiled framebuffers, each tile could be
rendered by different machine to achieve a much faster performance.

v9fb offers secure delivery of the display data since it uses the authentication support in
9P2000 protocol. The 9P auth information negotiates authentication between the client and
the fileserver before exchange of raw pixel data takes place. The ordered delivery of messages
in 9P protocol ensures there is no corruption of the frame pixels. Synchronization has not been
taken into account but could easily be added into v9fb.

Synthetic fileservers allow easy addition and removal of functional layers to the architecture.
These can further be in the form of fileservers or simple libraries acting on the exported files.
For instance, to make efficient use of the network bandwidth the raw pixel data transferred over
the network can be compressed before sending. Several performance optimization techniques
have been taken into account to achieve a good performance.

4.1. Performance Optimization

v9fb has been designed with low-latency high-bandwidth links in mind where the remote display
nodes are connected to the control nodes using a suitably high-speed network interconnect like
Gigabit Ethernet. Transmitting raw pixel data over the wire consumes considerable bandwidth
for real-time visual applications like video streams and interactive simulations.

4.2. Framebuffer compression

The raw framebuffer data can be compressed using various compression algorithms before
transmitting it across the network. This reduces the load on the network, however adds to
the overhead of post-processing the data before displaying it on the framebuffer. Compression
helps in low-latency links where the network gets overloaded by large bursts of raw pixel data.
Video hardware has already started supporting compression at the device level to reduce power
consumption [10]. Compression is done on a per-line basis by using a simple compression
algorithm like run-length encoding (RLE) or the LZ77 algorithm.

4.3. Framebuffer caching

Caching the framebuffer data at the client can improve the performance in case of non-
interactive applications where most accesses involve reading from a static framebuffer. A
write to the remotely mounted framebuffer invalidates the cache, and the changes have to
be propagated back to the framebuffer fileserver. Introducing caching, however, adds to
unmanaged complexity and the performance increases are seldom guaranteed[14].

4.4. Double Buffering

Double buffering at the client and server side can improve performance in most cases. The
network-attached framebuffer acts as a back buffer used by the framebuffer fileserver. The
scanout buffer acts as a front buffer which represents the memory of the video device. Flipping
between the two buffers compensates the network delay to a certain extent and can allow a
continuous stream of frames on the video display.

4.5. Multiplexed operations

Multiple clients writing to a single framebuffer pose a potential bottleneck in performance.
Multiple reads and writes can be multiplexed at the server with separate threads performing
the operations at once. This would significantly add to the performance of v9fbaggr which
essentially communicates to multiple framebuffer fileservers v9fbfs simultaneously. When mul-
tiple Treads or Twrites are to be done in parallel, multiple threads are spawned by the server
handling these request in parallel.

67

5. Implementation

5.1. v9fbfs

v9fbfs is a userspace 9P fileserver which scans the local machine for existing framebuffer devices
and exports an interface in the form of a file hierarchy given below.

/ctl
/data
/mmio
/fscreeninfo
/vscreeninfo
/cmap
/con2fbmap
/state

5.2. ctl file

The ctl file is used to control the framebuffer server and perform some several framebuffer
display operations. It supports the following commands :

pandisplay The pandisplay command is used to pan or wrap the display when the X or Y
offset of the display have changed.

blank blankmode Blank the framebuffer based on the supplied blank mode. This could be
used to suspend or power down remote idle displays to save power.

reload Reload the framebuffer filesystem interface. This looks for newly added framebuffer
devices and exports them.

5.3. data file

The data file represents the actual raw framebuffer memory buffer usually represented by the
/dev/fb[0-7] device in Linux. Writing to this file writes directly to the framebuffer memory.
Similarly, this file is read to fetch the current framebuffer contents.

5.4. mmio file

This file represents the memory-mapped IO memory of the framebuffer device. Userspace
applications can program the MMIO registers by reading or writing to this file. This can be
used to provide hardware acceleration to the framebuffer from the userspace.

5.5. fscreeninfo file

Reading from this file retrieves the fixed screen information of the framebuffer graphic device.
The device-specific framebuffer information like device type, visual properties, acceleration
support, the framebuffer memory length and addresses, the length of the scanline in bytes and
the memory-mapped I/O addresses of the device is exported by this file. Fixed information
cannot be changed, thus this file cannot be written to.

5.6. vscreeninfo file

Reading from this file fetches the virtual screen information of the framebuffer. This can
be used to determine the display capabilities of the framebuffer, supported resolutions and
color palettes, acceleration flags, bits-per-pixel and the margin and sync lengths among other
information. Any of the virtual screen information can be changed by writing to this file.

5.7. cmap file

Get/Put the color palette information.

5.8. con2fbmap file

Used to map the console onto the framebuffer device and vice versa.

5.9. state file

State of the framebuffer device which is used by v9fbaggr to maintain synchronization between
multiple displays.

68

Reading and/or writing to a particular file invokes a corresponding framebuffer device-specific
operation which talks to the underlying framebuffer device. This provides an alternative to
using the ioctl system call for device communication and consequently allows the device to be
accessed over the network. This filesystem interface exported by v9fbfs can also be mounted
as a filesystem using V9FS.

$./v9fbfs -d
Found framebuffer device /dev/fb0 ...
/dev/fb0 : VESA VGA
Framebuffer device memory from 0xfb000000 to 0xfb600000
Length: 6291456 bytes
Framebuffer MMIO from (nil) to (nil)
Length: 0 bytes
listening on port 8883

By mounting v9fbfs as a filesystem, framebuffer applications can use this interface to draw
to the framebuffer device. With recent support for per-process namespaces in Linux, it allows
each process to have an exclusive view of the framebuffer device.

$ mount -t 9p 192.168.10.1 /mnt/fb -o port=8883, uname=abhishek, debug=511
$ ls /mnt/fb/fb0/
cmap con2fbmap ctl data fscreeninfo state vscreeninfo
$ cat /mnt/fb/fb0/fscreeninfo
VESA VGA
4211081216 6291456
0 0
2
0 0 0
4096
0 0

v9fbfs can handle multiple framebuffer devices (upto 8). It has been implemented using libspfs,
a library for writing 9P2000 compliant userspace fileservers in Linux. Applications drawing on
the top of the framebuffer usually accept a command-line parameter to draw to a different
framebuffer device. Alternatively, the global FRAMEBUFFER environment variable can be set
to use a different framebuffer device.

5.10. v9fbaggr

v9fbaggr is a userspace 9P server and client typically running on a control node. On startup,
v9fbaggr reads a configuration file v9fbaggr.conf which specifies the remote framebuffer devices
that it needs to aggregate and their relative geometry to export a single logical framebuffer
device.

A typical configuration file for a 3x3 tiled display wall is shown below.

tile1=192.168.10.40!8883, tile2=192.168.10.64!8883, tile3=192.168.10.67
tile4=192.168.10.41!8883, tile5=192.168.10.65!8883, tile6=192.168.10.68
tile7=192.168.10.42!8883, tile8=192.168.10.66!8883, tile9=192.168.10.69

Currently, each newline in the configuration file represents a new row in the geometry of the
tiled display wall. Each entry is represented by a nodename followed by its network address
and the port on which the server is listening. Use of a rigid data representation format like
s-expressions might be considered in the future.

v9fbaggr communicates to the framebuffer fileserver v9fbfs running on these machines, fetches
their fixed and variable display information and aggregates the remote display resources to
provide a logical view of the 3x3 tiled display wall as a single unit of display. Since, v9fbaggr
exports an exactly similar interface as that of v9fbfs, application remain transparent of the
underlying multiple display devices spread across the network. Framebuffer operations like
panning the display, turning the display blank, reloading the fileservers are translated such that

69

they apply to all the remote framebuffer devices aggregated by v9fbaggr. In addition to this,
the commands accepted by the ctl file also takes an additional parameter, the node name, to
which the operation is to be applied.

v9fbaggr implements a memory management unit to translate the virtual address of the ag-
gregated framebuffer to an address of a specific framebuffer device based on the geometry
and layout of the tiled display wall. The virtual aggregated framebuffer provides a contiguous
linear memory to the application using it. Each memory access to this framebuffer is translated
to a 9P read or write to the appropriate framebuffer fileserver. The framebuffer memory of
remote framebuffer devices are represented as segments and mapped onto the virtual aggre-
gated framebuffer exported by v9fbaggr. Memory accesses to this framebuffer pass through a
segment selector which points to the various segment pointers depending on the actual layout
of the framebuffer devices. v9fbaggr allows unmodified applications and programs to be run
on a tiled display wall.

5.11. v9fb kernel module

The v9fb kernel module typically runs on the control node or the head node and creates a
pseudo-framebuffer device which translates framebuffer device operations into corresponding
9P calls. The intended use of this kernel module is to mount the filesystem exported by
v9fbaggr so that it can act as a passthrough framebuffer device to draw transparently to the
tiled display wall. It could also be used to mount a single remote framebuffer device for remote
workstation display applications.

$ modprobe v9fb address=192.168.1.40
$ dmesg | tail -n 2
[118398.958865] v9fb: Enabling remote framebuffer support
[118398.960945] fb1: Remote frame buffer device

$ rmmod v9fb
$ dmesg | tail -n 1
[118401.461253] v9fb: Unmounting remote framebuffer device

The kernel module has been written so that v9fb supports existing framebuffer applications
without changing them. It translates the device specific ioctl calls into a corresponding 9P
call. For instance, to get the virtual screen information of a framebuffer device, the ioctl call
to be used is as follows -

ioctl(fd, FBIOGET_VSCREENINFO, vscr);
/* vscr is a structure to hold the variable screen
information */

The v9fb kernel module translates this into an appropriate 9P operation to read from the
vscreeninfo file as shown below.

<<< (0x8059660) Twalk tag 0 fid 3 newfid 4 nwname 1 ’vscreeninfo’
>>> (0x8059660) Rwalk tag 0 nwqid 1 (0000000000000005 0 ’’)

<<< (0x8059660) Twalk tag 0 fid 4 newfid 5 nwname 0
>>> (0x8059660) Rwalk tag 0 nwqid 0
<<< (0x8059660) Topen tag 0 fid 5 mode 0
>>> (0x8059660) Ropen tag 0 (0000000000000005 0 ’’) iounit 0

<<< (0x8059660) Tread tag 0 fid 5 offset 0 count 8168
>>> (0x8059660) Rread tag 0 count 110 data 31303234 20373638 20313032
34203736 38203020 300a3332 20300a31 36203820 30203820 38203020 30203820
30203234 20382030 0a300a30 0a343239 34393637

<<< (0x8059660) Tclunk tag 0 fid 5
>>> (0x8059660) Rclunk tag 0

70

<<< (0x8059660) Tclunk tag 0 fid 4
>>> (0x8059660) Rclunk tag 0

This provides a way to serialize and deserialize device-specific framebuffer calls and obtain the
equivalent functionality by marshalling these calls using 9P. Most of the framebuffer ioctl()
calls are only done at the initialization time and once the display has b een setup properly,
majority of the traffic involves reading from and writing to the framebuffer memory. Thus,
multiplexing the reads and writes promises considerable performance gains.

5.12. v9fbmuxfs

v9fbmuxfs is similar to v9fbfs in a way that it exports the framebuffer device interface as a
filesystem. It however creates divides a single framebuffer device into separate regions exporting
each as a virtual framebuffer device which a client can write to. Simultaneous rendering and
display of a single frame by multiple clients or multiple graphic processing units on a single
client can be done with the help of v9fbmuxfs. The implementation of v9fbmuxfs has not
been done and thus qualifies as a future work for this infrastructure.

6. Future Work

Several issues still remain to be dealt with to use v9fb in a production visualization environment.
Due to constraints in time, actual performance metrics for driving tiled display walls using v9fb
could not be obtained by the time of this writing. Overall performance can be tuned using
several ways discussed in Section 4. Apart from this, we are working to support the following
features for the v9fb infrastructure.

6.1. Support for input events

Sending keyboard and mouse events over the network forms an integral part of remote display
technologies. Currently, v9fb does not address the forwarding of input events over the network.
Extending v9fb to support input events is trivial and we have started working on it.

6.2. Hardware-accelerated framebuffer

Due to the proprietary binary-only drivers distributed by major graphic card manufacturing
firms like NVIDIA, it has become difficult to use hardware acceleration for the framebuffer.
With several initiatives to revamp the state of graphics in Linux, it would soon be possible
to use the framebuffer or the in-kernel Direct Rendering Manager (DRM) to draw to the
video memory. DirectFB is a thin library which provides hardware graphics acceleration to the
framebuffer. A DirectFB extension to v9fb would allow using hardware acceleration to draw
high-resolution 3D graphics on the framebuffer device.

6.3. Communication between v9fbfs

One of the most common uses of the tiled display wall is to display high-resolution imagery.
Moving and panning of images on the tiled display wall results in resending the pixel data from
the control nodes to all the display nodes. This forms a potential bottleneck at the control
node. Enabling communication between the individual framebuffer fileservers would increase
the performance of interactive applications on the display wall.

7. Conclusion

v9fb provides a novel approach of accessing remote devices over the network in Linux using
concepts and ideas employed by Plan 9 since its inception. Withstanding the several difficulties
posed by the rigid device subsystem in Linux, this scheme could be easily extended to allow
exporting various other devices as a filesystem over the network. v9fb finds various applica-
tions in high performance computing and remote visualization technologies. It offers flexibility
and configurability leading to dynamic architectures in a large-scale modeling and simulation
environment. We are working on several optimizations to this infrastructure to make it capable
enough for use in production environments.

References

[1] Eric Van Hensbergen and Ron Minnich. Grave robbers from outer space: Using 9p2000
under linux. In In Proceedings of Freenix Annual Conference, pages 83–94, 2005.

[2] Don Hopkins. The X-Windows Disaster. UNIX-HATERS Handbook.

71

[3] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D. Kirchner,
and James T. Klosowski. Chromium: a stream-processing framework for interactive
rendering on clusters. ACM Trans. Graph., 21(3):693–702, 2002.

[4] Ronald Minnich and Andrey Mirtchovski. Xcpu: a new, 9p-based, process management
system for clusters and grids. In CLUSTER. IEEE, 2006.

[5] Krishnaprasad Naveen, Vishwanath Venkatram, Chandrasekhar Vaidya, Schwarz Nicholas,
Spale Allan, Zhang Charles, Goldman Gideon, Leigh Jason, and Johnson Andrew. Sage:
the scalable adaptive graphics environment.

[6] Brian Paul, Sean Ahern, Wes Bethel, Eric Brugger, Rich Cook, Jamison Daniel, Ken
Lewis, Jens Owen, and Dale Southard. Chromium renderserver: Scalable and open remote
rendering infrastructure. IEEE Transactions on Visualization and Computer Graphics,
14(3):627–639, 2008.

[7] Rob Pike. Rio: Design of a concurrent window system. February 2000.

[8] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard Trickey,
and Phil Winterbottom. Plan 9 from Bell Labs. Computing Systems, 8(3):221–254,
Summer 1995.

[9] Prabhat and Samuel G. Fulcomer. Experiences in driving a cave with ibm scalable graphics
engine-3 (sge-3) prototypes. In VRST ’05: Proceedings of the ACM symposium on Virtual
reality software and technology, pages 231–234, New York, NY, USA, 2005. ACM.

[10] Hojun Shim, Naehyuck Chang, and Massoud Pedram. A compressed frame buffer to
reduce display power consumption in mobile systems. In ASP-DAC ’04: Proceedings of
the 2004 conference on Asia South Pacific design automation, pages 818–823, Piscataway,
NJ, USA, 2004. IEEE Press.

[11] Munjae Song. A survey on projector-based pc cluster distributed large screen displays and
shader technologies.

[12] Geert Uytterhoeven. The Linux Frame Buffer Device Subsystem. Linux Expo ’99, 1999.

[13] Bin Wei, Douglas W. Clark, Edward W. Felten, Kai Li, and Gordon Stoll. Performance
issues of a distributed frame buffer on a multicomputer. In HWWS ’98: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 87–96,
New York, NY, USA, 1998. ACM.

[14] S. Jae Yang, Jason Nieh, Matt Selsky, and Nikhil Tiwari. The performance of remote
display mechanisms for thin-client computing. In In Proceedings of the 2002 USENIX
Annual Technical Conference, 2002.

72

