Glendix: A Plan9/Linux Distribution

Anant Narayanan
Shantanu Choudhary
Vinay K. Pamarthi
Manoj S. Gaur

Malaviya National Institute of Technology, Jaipur, India

ABSTRACT

We describe our approach of bringing the Plan 9 userspace to the Linux
kernel in order to spread the use of Plan 9 tools amongst the Linux devel-
oper community.

1. Introduction

GNU/Linux is a popular free operating system in use today. GNU/Linux strives to
be strictly compliant with POSIX standards, and is thus tied down with several require-
ments and thereby ceases to be innovative as far as operating system design is con-
cerned. Plan 9 [1], on the other hand, was designed to be a from-scratch successor to
UNIX. The Plan 9 operating system offers several new features that are very compelling
to a developer in today’s era of of personal computing.

The Plan 9 kernel, however, supports only a bare minimum of hardware. That is one of
the primary reasons of its unpopularity for day-to-day use. The Linux kernel, on the
other hand, has had years of development behind it, and enjoys the support of several
hardware components and developers alike.

We propose Glendix, a general purpose operating system that aims to combine the
Plan 9 userspace with the Linux kernel, to offer today’s developer an exciting environ-
ment for application development on personal computers and embedded systems alike.

The primary motivating factor here is to promote the Plan 9 style of application develop-
ment to the large base of developers that Linux already has. A secondary factor is to
eliminate the need for GNU [2] based userspace software, by replacing them with their
lightweight Plan 9 counterparts, which are just as functional and portable. The resulting
distribution would be a lightweight Linux based operating system.

In this paper, we describe the approach taken by us to create Glendix. We begin
with a review of the different approaches possible, and then describe the chosen
methodology, along with significant challenges and how we overcame them. We con-
clude with a summary of what has been done so far and a few notes on future work.

2. Review

From a broad perspective, there are two kinds of compatibility we can create between
programs on Plan 9 and Linux. In this section, we discuss source and binary compatibil-
ity, and what they mean in the context of Glendix.

{anant@kix.in,choudhary.shantanu@gmail.com,pamarthi.vinay@gmail.com,msgaur@mnit.ac.in}

2.1. Source compatibility

"Plan 9 from User Space" (also known as plan9port) [3] is an existing software pack-
age for POSIX compliant operating systems that consists of ports of several Plan 9 appli-
cations. While most of Plan 9’s libraries have also been ported, the solution is not com-
pletely perfect. For example, taking the source for a Plan 9 program and recompiling it
using plan9port may not result in correctly working binaries all the time.

One of the approaches we reviewed early on during the project was very similar to
plan9port. The most significant advantage for this approach is that Plan 9 applications
can be run on a variety of UNIX clones (not just Linux) after a recompile.

However, this would require us to write POSIX equivalents of all the Plan 9 libraries,
which seemed like a step backward. The additional constraint of having to recompile the
program for each target environment was not very appealing (what if the sources were
not available?), and thus we chose to reject this approach.

2.2. Binary compatibility

A more appealing solution was to achieve binary-level compatibility of all Plan 9
applications. The mantra here was compile—once—execute—everywhere. We wanted to
ensure that it wouldn’t matter where the program was compiled, it should run as
expected on both Plan 9 and Linux.

While this approach seems ideal, the Linux kernel provides the capability to support new
binary formats, such as Plan 9’s a.out. In order for this approach to work, we have to
make Linux behave exactly as a Plan 9 kernel would, as far as applications are con-
cerned. There are two primary channels for an application to access functionality pro-
vided by the Plan 9 kernel: system calls and file servers. If we were to provide suitable
implementations of both in the Linux kernel, userspace applications should be oblivious
to the fact that the underlying kernel is Linux and not Plan 9, which is exactly what we
want.

We decided to adopt this approach because it was interesting and seemed to
achieve our stated goals in a clean manner.

3. Methodology

In this section we discuss the implementation details of an a.out binary loader for
Linux and Plan 9 style system call handling.

3.1. Loader

We will not describe the structure of a Plan 9 executable, which is already docu-
mented [4] in a.out(5). Linux already supports a variety of executables - ranging from
ELF (the native Linux executable format) to COFF. Hence, the foundation for adding sup-
port for a new executable format had already been laid, we simply had to use the tools
that the kernel offered us.

One of the roles that kernel modules can accomplish is adding new binary formats to a
running system, so we chose to write a kernel module for the Plan 9 executable format.
The single biggest advantage of writing a kernel module for this purpose is that we
didn’t have to recompile the kernel and reboot every time we made a change to the
loader - thanks to Linux’s dynamic module loading/unloading facilities.

Let’s take a look at how the exec system call is implemented in Linux, because that
is central to our objective. The entry point of exec lives in the architecture-dependent
tree of the source files, but all the interesting code is part of fs/exec.c. The toplevel
function, do_execve (), performs some basic error checking, fills the "binary param-
eter” structure 1inux_binprm and looks for a suitable binary handler. The last step is
performed by a seperate function search_binary_handler (), The function finds

the appropriate binary handler by scanning a list of registered binary formats, and pass-
ing the binprm structure to all of them until one succeeds. If no handler is able to
deal with the executable file, the system call returns the ENOEXEC error code.

Linux is also compatible with the standard Unix behavior of supporting exectuable text
files that begin with #! . Such files are executed with the help of an intepreter which is
specified immediately after the #! symbol. For this purpose, a binary format specialized
in running interpreter files (fs/binfmt_script.c) , is included. The function is
designed to be reentrant, and binfmt_script checks against double invocation. The
ability to invoke an intepreter in a binary format handler helps us greatly, as we shall
see later.

3.2. Binary format handling

As mentioned before, Linux offers the ability to register new binary formats at run-
time. The implementation is quite straightforward, although it involves working with
rather elaborate data structures - either the code or the data structures must accommo-
date the underlying complexities; elaborate data structures offer more flexibility than
elaborate code.

The core of a binary format is represented in the kernel by a structure called
linux_binfmt, which is declared in the 1inux/binfmts.h file:

struct linux_binfmt {
struct linux_binfmt *next;
long *use_count;
int (*load_binary) (struct linux_binprm *, struct pt_regs *);
int (*load_shlib)(int fd);
int (*core_dump)(long signr, struct pt_regs *);

};

The three methods declared by the binary format are used to execute a program
file, to load a shared library and generate a core dump, respectively. The next pointer
is used by search_binary_handler(), while the use_count pointer keeps
track of the usage count of modules. Whenever a process p is executing in the realm of
a modularized binary format, the kernel keeps track of use_count to prevent unex-
pected removal of the module.

Of the three methods, we only need to implement 1load_binary. load_shlib is
not required as all Plan 9 binaries as statically linked, and core_dump is mainly used
to generate core dumps readable by the GNU debugger (which we do not want to use).

The binary format handler receives two important parameters by the kernel. The
first contains a description of the binary file and the second is a pointer to the processor
registers. The first argument, a 1inux_binprm structure, contains, in addition to
other fields, the first 128 bytes of the binary file (which enable us to quickly check the
magic number, and decide if we want to execute this binary or not). We also get
addresses of the data pages used to carry around the environment and argument list for
the new program.

3.3. Memory layout and padding

Once we’ve confirmed that the given executable is indeed an a.out file, we begin to
load its contents into memory. The layout in memory is described in detail in a.out(5)
but take note of the fact that the in-memory representation of a binary does not match
with that of the contents of the file. There is a gap between the TEXT and DATA sec-
tions in memory, because of page-alignment. In the executable file, however, all sec-
tions are one after the other, so while copying the contents into memory we need to cre-
ate this extra padding.

This was our first major challenge. We noticed that all of the binary formats Linux

supports, actually do contain the padding in the file itself, and therefore, all their han-
dlers use the (in)famous mmap () call to directly map the file to memory. We cannot use
that approach because mmap () does not work on non page-aligned offsets, and the
DATA section is bound to be at such an address in the file.

As a workaround, we use Linux’s interpreter capabilities (discussed earlier) to
invoke a userspace program whenever an authentic a.out executable is found. This user-
space program creates this extra padding in the file itself, which may then be memory-
mapped. This padding program also turned out to be extremely useful in later stages of
the project, as will be discussed in the next section.

3.4. Top of Stack

The statement that system calls are the only way for Plan 9 userspace applications
to interact with the kernel is not entirely true. The Plan 9 kernel initializes and maintains
a special structure called Tos, which is also used to exchange data between the kernel
and userspace:

struct Tos {

struct /* Per process profiling */
{
Plink *pp; /% known to be 0(ptr) */
Plink *next; /* known to be 4(ptr) */

Plink *last;
Plink *first;
ulong pid;
ulong what;

} prof;

uvlong cyclefreq;

vliong kcycles;

vlong pcycles;

ulong pid;

ulong clock;

/* top of stack is here */

};

As you can see, there are several fields important for process profiling, which need
to made available when a binary in executed. The Plan 9 kernel initializes this area
above the userspace stack and stores the address in the accumulator, from which user-
space applications retrieve and store it in a global variable _tos. This is done by all
programs linked with libc. Linux, however, resets the accumulator immediately after the
loader finishes (to signal the return value of exec), so we can’t use that register to notify
userspace applications of the Tos address.

As a workaround, we used the padding program described in the previous section,
to mangle the instruction that fetched the address from EAX and changed it to fetch the
address from EBX instead (Linux does not modify EBX in any way between the loader’s
end and the program’s beginning). The opcode for the MOV instruction is 0x89. The
first instruction in a typical Plan 9 userspace application, therefore, would usually be:

89 05 xX XX XX XX

where 'xx xx xx xx’ denotes a 32-bit address corresponding to the global variable
_tos in the DATA section.

We change this instruction to:

89 1D xX XX XX XX

in accordance with x86 opcode table [6] for MOV :

r32(/r) | EAX | ECX | EDX | EBX | ESP | EBP | ESI | EDI
Address Mod R/M Value of ModR/M Bytes (In Hex)
[EAX] 00 000 00 08 10 18 20 28 30 38
[ECX] 001 01 09 11 19 21 29 31 39
[EDX] 010 02 0A 12 1A 22 2A 32 3A
[EBX] 011 03 0B 13 1B 23 2B 33 3B
[-1[-] 100 04 0C 14 1C 24 2C 34 3C
disp32 101 05 oD 15 1D 25 2D 35 3D
[ESI] 110 06 OE 16 1E 26 2E 36 3E
[EDI] 111 07 OF 17 1F 27 2F 37 3F

3.5. System call handler

Once the loader had been written, the next major task was to be able to intercept
system calls. In Linux, system calls are invoked using the 0x80 interrupt, which raises
the programmed exception with that vector. The calling process passes the system call
number to identify the required system call in the EAX register. The kernel saves the
contents of most registers in the kernel mode stack, hence other parameters to the sys-
tem call (if required) are placed on subsequent registers. The handler is exited when
the system call finishes, and the registers are restored. The return value of the system
call is placed in the accumulator, where it is picked up by the calling process. An exam-
ple of a "Hello World’ program in pure assembly for Linux is provided for clarity:

section .data
hello: db ’Hello World!’, 10
hellolLen: equ $-hello
section .text
global _start
_start:
mov eax, 4
mov ebx, 1
mov ecx, hello
mov edx, hellolen
int 80h
mov eax, 1
mov ebx, O
int 80h

Thankfully, the method of system call invocation in Plan 9 is not very different from
what is described above. The only two big changes are: a) Plan 9 uses programmed
exception vector 0x40 to notify the kernel, and, b) Plan 9 applications store arguments
for the system call on the userspace stack, just like for any other function call. An exam-
ple program for Plan 9 will make the differences clear:

DATA string<>+0(SB)/8, $-"HelloO
GLOBL string<>+0(SB), $8
TEXT _main+0(SB), 1, $0

MOVL $1, 4(SP)
MOVL $string<>+0(SB), 8(SP)
MOVL $7, 12(SP)

MOVL $§-1, 16(SP)
MOVL $§-1, 20(SP)

MOVL $51, AX

INT $64

MOVL $string<>+0(SB), 4(SP)
MOVL $8, AX

INT $64

Unfortunately, the Linux kernel was not built to support the interception of different
interrupt vectors in a kernel module. The initialization is done at boot time, hence, for
this part of the project, we had to directly edit the kernel source (as opposed to a mod-
ule as done for the binary format loader).

arch/x86/kernel/traps_32.c is where programmed exception gates are cre-
ated. The routine set_system_gate() is provided by the kernel to set an interrupt
service routine (ISR) for a particular exception vector. We used that function to set a gate
for interrupt vector 0x40. As for the ISR, we copied the same routine as for interrupt
vector 0x80, with the exception of calling a custom system call implementation in the
end: sys_plan9(), irrespective of the system call number in the accumulator. The
ISR copies the register values to the kernel stack as usual, and triggers sys_plan()
with appropriate arguments. We use the value of the EBP register to obtain the stack
pointer in userspace and extract system call arguments using the __get_user () rou-
tine provided by Linux. These arguments are in turn passed to an internal system call
implementation. Sometimes this means calling an existing Linux system call, but in
many cases, we had to write one from scratch (eg: sys_fd2path) . A snippet of the
sys_plan9 function is as follows:

asmlinkage long sys_plan9(struct pt_regs regs) {
/* retrieving arguments from userspace stack */
unsigned long *addr = (unsigned long *)regs.esp;

/* check syscall number and invoke */
switch (regs.eax) {

case 51: /* pwrite */

argl = *(++addr);
arg2 = *(++addr);
arg3 = *(++addr);
addr = addr + 2;

offset = (loff_t) *(addr);
if (offset == Oxffffffff)

retval = sys_write(argl, (const char __user*)arg2, arg
else

retval = sys_pwrite64(argl, (const char __user*)arg2,

break;

3);

arg3,

offset);

4. Conclusion

By implementing 15 of the 39 system calls, we got a surprising number of applica-
tions to run. Examples include 8c, sed, grep, echo, cat, tar, cb, cal and dc, among oth-
ers. We believe that on completing all the system calls, Glendix will provide an excellent
base for developers to start writing applications on Linux in the "Plan 9 way". The ability
to run unmodified binaries in both operating systems is not provided by any other exist-
ing alternative, with the exception of 9vx (which is discussed in the appendix). The per-
formance of these binaries will be the same as other native linux binaries because all the
supporting infrastructure is built directly into the kernel.

Glendix, at this stage, serves as proof of concept that ideas from the Plan 9 system
can be integrated into the Linux kernel. However, in order to achieve the goal of provid-
ing a complete “Plan 9 experience’ to application developers, there is a lot more to be
done, which is discussed in the following section.

5. Future Work

While most of the system calls from Plan 9 map more or less directly to their Linux
counterparts, some features are unique Plan 9. Process and address space management
along with per-process namespaces are the two most important aspects that affect the
implementation of system calls.

Recently, the Linux kernel added support for per-process namespaces via the
CLONE_NEWNS flag for its clone system call. Hence, Linux already contains primitives
for namespace manipulation, even if they are not exposed to userspace applications
directly. We believe that system calls such as mount and bind can be implemented
using primitives already provided by the Linux kernel, and indeed, we are already work-
ing on them. rfork, on the other hand, is a little trickier, especially because of the
specific combination of the RFMEM and REFPROC flags; which results in the creation of a
new process sharing everything with its parent, except for the stack. For this particular
permutation, it will be neccessary to dig deeper into the memory management primi-
tives provided by the Linux kernel, but is entirely possible. In fact, since we are dealing
with kernel code here, anything is technically possible, the only variation amongst the
different system calls is the amount of code to be changed and/or written.

The other major feature to be emulated is that of the synthetic file systems pro-
vided by the Plan 9 kernel. Since Linux already supports such file systems (atleast par-
tially - examples are /proc and /sys), we think it will not be hard to extend this to
true Plan 9 filesystems such as /net. /dev/draw can be built on top the native
Linux framebuffer device.

Once we implement all the system calls and synthetic file systems correctly, there
should be no perceivable difference between the Glendix kernel and a Plan 9 kernel as
far as an application is concerned. Source code and other details pertaining to the pro-
ject are available on http://glendix.org/. Developers are encouraged to partici-
pate!

Acknowledgements

This project was born from earlier open source projects, so we would like to begin
by thanking the Plan 9 and Linux communities for giving us such great software and
support to work with. Specifically, we would like to thank Charles Forsyth, Russ Cox,
Rene Herman and Al Viro, who contributed significantly to the project by offering their
insightful comments, suggestions and help.

Major portions of Glendix were executed as a final term project at the Malaviya National
Institute of Technology. We would like to thank Dr. Vijaylaxmi for her timely feedback
and suggestions.

References

[1] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard
Trickey, and Phil Winterbottom, ‘‘Plan 9 from Bell Labs’’, Computing Systems, 8, 3, Sum-
mer 1995, pp. 221-254

[2] ““GNU’s Not Unix’’, http://www.gnu.org/

[3] Russ Cox, ‘““Plan 9 from User Space’’, http://swtch.com/plan9port/

[4] ““Plan 9 Programmer’s Manual’’, http://plan9.bell-labs.com/sys/man/

[5] Alessandro Rubini, “‘Playing with binary formats”’,
http://www.linux.it/~rubini/docs/binfmt/binfmt.html

[6] “Intel 64 and IA-32 Architectures Software Developer’s Manual’’, volume 2A

[7]1 Bryan Ford, Russ Cox, ‘“Vx32: Lightweight User-level Sandboxing on the x86”,
USENIX Annual Technical Conference, Summer 2008.

Appendix: Comparison to 9vx

Vx32 [7] is a user-mode library that was recently developed at CSAIL, MIT. The pri-
mary purpose of the library is to provide a safe and portable execution environment for
untrusted x86 code. One of the interesting applications of this is the ability to run Plan
9 executables on all platforms that Vx32 supports (currently FreeBSD, Linux and Mac OS
X). 9vx is the project that uses Vx32 to run an instance of the Plan 9 system.

On the surface, it may seem like the outcomes of 9vx on Linux and Glendix are similar,
but there are many important differences. Vx32 can be compared in a very rough sense
to a virtual machine, and thus there is a disjoint between the binaries running inside it,
and the operating system it runs on. Glendix, however, aims to provide a more close
coupling between Plan 9 applications and the Linux kernel, whether you trust the exe-
cutables or not. Secondly, Vx32 is restricted to x86 binaries only. While this paper dis-
cusses only the x86 implementation of Glendix, we can easily extend it to cover other
architectures as well, given the cross-platform nature of both Plan 9 binaries and Linux.

