9P For Embedded Devices

Bruce Ellis
Tiger Ellis

Club Birriga
Bellevue Hill, NSW, Australia
brucee@chunder.com

ABSTRACT

9P has proved over the years to be a valuable and malleable file system
protocol. Furthermore, as is it embraced by Plan9, it is more than a con-
venient protocol for interaction between disparate devices. Indeed Plan9
relies on it.

The protocol can be used to encapsulate control of an embedded device,
which simply serves a 9P file system. However, even though 9P is very
lightweight, it can be adapted to be more frugal on device resources.
This is important on very small devices (FPGAs) where a full 9P imple-
mentation can consume most of the available gates.

We address this issue as a filesystem (embedfs) on the embedded
machine’s gateway Plan9 machine. We provide implementation and con-
figuration details targeted at the Casella Digital Audio device.

1. Introduction

9P filesystems are used for diverse and often unexpected purposes. You need only look
at upas [ref], fossil [ref], and £tpfs(1). Most are served by user-level processes,
the kernel providing the necessary multiplexing and presenting physical devices as 9p
servers. Remote devices are accessed seamlessly via whatever connection protocol is
appropriate to the target. Typically this a common service, like 9fs, using a TCP con-
nection. It can easily be a specialized server on an embedded device connecting via
USB, serial, raw ether, etc.

A small embedded device may not have enough resources to provide a full 9P service.
The resources that may be lacking include buffer space, outstanding request queue
space; and of major concern sufficient silicon for handling the full protocol. Our inten-
tion is to provide a a file system which acts as an interface to a device implementing a
(configurable) subset of 9P, seamlessly - respecting the integrity of the model.

Arguably a filesystem tailored to a specific device with a custom protocol is a more effi-
cient use of cycles. We instead embrace a reuseable, respectable, configurable model
and existing code - a more efficient use of brain cycles.

2. An Embedded File System Interface

The interface is implemented using 1ib9p [ref], which provides some clear optimiza-
tions. (Familiarity with the 9P protocol is assumed in this paper for brevity.) It is well
structured and malleable.

Given the disclaimer we will state a result for a small embedded device, which has a very
fixed structure and limited resources. This could easily be the conclusion - except there

39

is more to tell.

This is what Casella looks like:

——TW—TW—TW—
———W——W——W—
s S s
——TW—ITW—TW—
——TW—ITW—TW—
——TW—TW—TW—
———W——W——W—
——r——Tr-—-Ir——

TEEEEEEE

% cd /n/casella;

324
324
324
324
324
324
324
324

1ls -1

casella
casella
casella
casella
casella
casella
casella
casella

casella
casella
casella
casella
casella
casella
casella
casella

[cNoleoNoNoNoNoNe]

Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug

26
26
26
26
26
26
26
26

22:
22:

22

22

02
02

:02
22:
22:

02
02

:02
22:
22:

02
02

audioctl
audioin
audioout
ctl

irom
midictl
midiin
midiout

The directory served is flat with a constant map between name and stat info (including
Qdids). This information is loaded by embedfs from a configuration file.

Enumerating the 9P Tmesgs served by embedfs:

Tversion
1ib9p handles this message.
Tauth
1ib9p user auth() function handles this. Usually no authentication is required,
access is managed by permissions on the srv file. It seems unnecessary to repli-
cate the natural plan9 access mechanism.
Tflush
Passed onto the device, held by the server, or even discarded.
Tattach
Returns the root Qid.
Twalk
Returns the appropriate Qid.
Topen
Returns the appropriate Qid, and a suitable iounit. Informs the device if appro-
priate.
Tcreate
Eperm.
Tread, Twrite
Passed onto the device.
Tclunk
1ib9p handles this message. User function destroyfid() informs the device
if appropriate.
Tremove
Eperm.
Tstat
1ib9p user stat () function handles this (based on configuration data).
Twstat
Eperm.
Note that the communication with the device can (and does) use a subset of 9p (specifi-
cally: open, clunk, read, and write). In fact the device need only support read
and write.

40

3. A Closer Look

The result presented above is readily implemented using 9pfile(2) - the Tree and
the collection of Files are fixed once the configuration is loaded, the communication
with the device uses fcall(2). The device requirements are small - storage and logic
fall into "a small chunk of the device" category. So what’s up? First we’ll look at
improvements to this implementation for a small, simple, device (casella) and then
examine enhancements for more capable devices.

3.1. iounit Bottleneck

The high bandwidth files, audioin, audioout, and irom, have small on-chip
buffers, so the obvious thing is to reflect this in the returned iounit. This has a very
adverse effect upstream as a read of 8K will generate an enormous amount of host to
host traffic. If these files are configured as "buffered" we can advertise a large iounit
and handle the large transaction in the server with multiple (local speed) transactions
with the device.

Example: The server receives a Tread request with size of 4K. The device has a 32
byte buffer. The server sends multiple 32 byte Tread requests to the device until one
of a) the 4K buffer is full, b) a short read, or ¢) an Rerror. Similarly for Twrite.

3.2. Outstanding Requests

The chip has limited resources for storing outstanding requests. The device architec-
ture is such that a restriction of a single request per file is natural and adequate. The
server could simply queue requests per file. It may also wish to gate file opens to effec-
tively make each file "exclusive-open with wait rather than error", allowing reads/writes
of an open file to overtake waiting opens. This is particularly handy for control files.
Fids and Tags are handled in the server, translated to device file number for commu-
nication with the device.

3.3. The Result

With these modifications the silicon footprint on the device is bounded (always good)
and small in both storage and logic.

4. Enhancements

Casella has strict real-time constraints. Audio input and output are both 176KB/sec.
Midi is much slower but still must not overflow/underflow. A program using embedfs
to control a casella must use multiple outstanding reads and writes to meet these
constraints. A library is provided to encapsulate this. The server uses edf [ref] to guar-
antee the device data rates specified in the configuration file.

5. Example Configuration
The configuration file for casella is listed below.

41

#
casella.conf

#

downlink 2M
uplink 2M
iounit 32
buffer 8K

file audioctl
file audioin
file audioout
file ctl

file irom
file midictl
file midiin
file midiout

666
222
444
666
666
666
222
444

buffered
buffered

buffered

buffered
buffered

176K
176K

3125
3125

42

