
-- --

Using Inferno to Execute
Java on Small Devices

C. F. Yurkoski
L. R. Rau
B. K. Ellis
Bell Labs

600 Mountain Avenue
Murray Hill, NJ

{yurkoski, larryr, brucee}@bell-labs.com
http://www.chunder.com/

Abstract. This paper describes an implementation of Java [1] on the
Inferno operating system.

There are applications for which object oriented designs are the appropriate
solution. Java is an object oriented programming language in which these
solutions can be written. But as always there are tradeoffs, and O-O designs
in Java are not without theirs. Among the costs of using Java is that the
memory and permanent storage required to run applications tends to be large,
resulting in them not fitting on devices with limited capacity.

Inferno is a network operating system that was created to allow applications
to be easily and dynamically distributed across networks. With Inferno,
applications can easily take advantage of resources in the network such as
persistent storage, memory, devices, cpu, server processes etc. as if they were
local.

Here, we describe an implementation of Java on Inferno that minimizes the
amount of local storage needed on a small device at the cost of a small
increase in Inferno’s text size. This work is explained and its performance
characteristics are reported.

1. Introduction

First some background on Inferno. Inferno is an operating system designed for
building distributed services. [2] It has three design principles. First, all resources
are named and accessed like files in hierarchical file systems. Second, disjoint
resource hierarchies can be joined together into a single, private hierarchical
namespace. Third, a single communication protocol, styx, is used to access all
resources, whether local or remote.

Inferno is small, less than 1 megabyte, including all of the kernel, graphics
libraries, virtual machine and security code. Inferno is also highly portable running
on many systems and processors (x86, sparc, mips, arm, powerpc and more).

-- --

Inferno applications have been written in a programming language called Limbo.
[3] Limbo has a number of features that make it well suited for a heterogeneous
network environment. It has a rich set of basic types, strong typing, garbage
collection, concurrency, communications and runtime loadable modules. Limbo
may be interpreted or compiled just-in-time for efficient and portable execution.
Originally, Limbo was the only language available to application programmers
under Inferno.

Object oriented designs can be the best way to solve some programming problems,
but as with all engineering decisions there are trade-offs. O-O is no exception; the
cost of the programming convenience of inheritance, polymorphism and information
hiding can be increased program size. [4] On machines with ample memory and
disk space, this trade-off may be worth it in terms of overall development costs.
Even PCs these days often have over 100 megabytes of RAM and gigabytes of disk
space; and workstations and servers have even more. However there are many
devices on which you might like to run your applications that are equipped with
significantly less. These devices include screen phones, nomadic and wireless
computers and several flavours of "set top" boxes (web browsing set-top boxes,
video on demand set-top boxes, next generation cable boxes, etc.). Typically these
devices have four to eight megabytes of RAM and some flash storage. The effort
described here addresses the problem of running on these small devices. To do so,
two issues must be addressed: the device must have enough storage for the
program text and enough memory in which to execute the application. Java is
becoming the programming language of choice for object-oriented designs, but Java
is not small. It is effected by both of these issues.

Start with storage. On a sparc, the total size of the 1.1.3 Java shared libraries from
Javasoft needed to run the virtual machine is 1.6 megabytes. Under Windows 95,
for the 1.1.4 version the size of the java.exe, DLLs and libs is 0.96 megabytes.
Besides this, another 9.29 megabytes are needed to store the Java core classes in
the classes.zip file. Then there is the operating system itself that is needed to
execute this code. Together these numbers represent the static storage required by
the Java run time environment.

A solution to the first issue, storage for the text for the Java runtime, could be to
store it remotely and not on the device. The problem with this approach is that
most of these small devices do not have high bandwidth network connections.
Most will be equipped with at most a 56K modem. It takes too long to download
the ten megabytes of code required to begin to run a Java application.

Second is the issue of the execution footprint needed to run a Java program, that is
the memory needed to load the Java virtual machine, possibly just in time compile
the classes, create the objects, etc. This, of course, will vary between programs.
Even a minimal Java "hello world" on a sparc needs 4.3 megabytes in which to run
(not counting any of the operating system). Any Java programs that use the
graphical interface (AWT) are considerably larger. A trivial graphical clock

-- --

program needs 1032 8K pages (8.24 megabytes) of user space memory in which to
run. Devices that have only a total of 8 megabytes of memory cannot run such
programs.

The small appliance world of screen phones, set top boxes and wireless computing
is considerable different from the internet-centric desk top world in which Java
grew up. What is good in one realm is not necessarily viable in the other. In an
attempt to address this, Javasoft recently released its Personal Java [5] specification
which is a slightly reduced subset of the original desk top Java. Implementations
of Personal Java are scheduled to be available early in 1998. This slightly limited
API reduces the size of the mandatory Java core classes somewhat. But it is still
large and reducing the number or complexity of the required system classes has no
effect on the size of the native shared object libraries needed to run the virtual
machine. Nor does it have any effect on the run time footprint that is required.

The size of code needed for the Java run time makes it impossible to store it on
these small devices and the network connections that they have make it impractical
to download all the code to the devices on demand. A much smaller system is
required, preferably a smaller system that can be easily segmented between the
most important bits that could be stored locally on the device and the less
important parts that have be to downloaded on demand. Ideally, it should be easy
to distribute an application dynamically (what is where) to take advantage of
different hardware configurations and network capacity. Inferno is designed to be a
system that makes it easy to build such dynamically distributable services.

You might ask then why not just develop the application in a language that was
designed for this environment - a language like Limbo. Given a clean sheet, that
may often be the best solution. But there will be times when that is not practical.
First, you might have already written the application in Java and if it is large
enough, it may not be worth rewriting. Secondly, there may be externally produced
programs that are written in Java and available to you on the web only as .class
files that you would like to run on small devices. Third, there will be reasons, even
on small devices, why writing a particular application in Java makes sense.
Finally, programmers will program in whatever language they prefer. It is of no
avail to tell them what you think is good for them.

2. Design Goals

Our goal was to allow Java to run on Inferno while requiring as little local
persistent storage and memory as practical. We imposed the following design
constraints:

• Adding Java support to Inferno should have no detrimental effect on Inferno.
In particular, any increase in the operating system text size required to support
Java system should be almost zero. Also any increase in OS data space when
Java was not running had to be zero, and no changes required for Java in the

-- --

operating system should make it run slower.

• The system should support Javasoft’s Personal Java API.

• When running Java the system should use as little memory as possible and run
as fast as practical.

• The resulting code must be completely portable, running everywhere Inferno
runs. It could not be dependent on any platform specific features.

3. Implementation

The Inferno operating system has at its core a virtual machine (VM) called Dis.
Dis is a memory-to-memory VM that allows small, simple just-in-time compilers to
generate efficient code. The Limbo compiler produces virtual instructions for
execution on the Dis VM.

Dis and the above considerations precipitated a design in which Limbo programs
translate, resolve and provide the run time support needed for Java programs.
Limbo modules provide the implementations of the native methods on which Java
programs depend. Only some minor modifications were made to the Inferno kernel
for Java.

The major components of this architecture are:

• A translator called j2d, written in limbo that converts the Java bytes codes in
.class files into Dis instructions.

• A loader, also written in Limbo, which resolves the class hierarchy, provides a
variety of run time support for the Java classes and uses j2d to translate the
.class files as needed.

To facilitate faster loading, system core classes can be pre-translated from Java
byte codes into Dis instructions.

• Most Java implementations rely on a large body of native methods written in
C/C++. In fact, the Personal Java proposal defines its JNI, which is in C/C++,
as part of its standard. Although Inferno supports C code as drivers, in Inferno,
user level code is written in Limbo. So we wrote our native methods in Limbo.
This makes them smaller than if they were in C by a factor of 3 though it does
make them slower.

Also two particularly huge Java base classes were re-written in Limbo
dramatically reducing their size. By rewriting it in Limbo, the memory needed
for Character.class was shrunk from 139 K bytes to 48 Kbytes. The
requirement for CharacterEncoding and character to byte conversion was reduce
from 65K to 18K.

-- --

• Only nine simple instructions that required just 36 lines of C code to implement
had to be added to the Dis virtual machine. Four of the new instructions
support new type conversions and two provide previously unsupported shifts.
The last three allocate new structures. These nine are:

cvtrf convert real to float

cvtfr convert float to real

cvtws convert word to short

cvtsw convert short to word

lsrw logical shift right word

lsrl logical shift right long

mnewz allocate class

newaz allocate (and zero) an array

newz allocate object

It should be noted that none of these new instructions were required; the
translation can be accomplished without them. However, they make the
generated code more efficient. These new instructions are also not Java
specific; the Limbo compiler can now generate them too.

• Finally, some minor modifications were required in the kernel. These exposed
to user level code some interfaces that had previously only existed internal to
the operating system. In general, these allow the loader to resolve modules and
to create objects that the garbage collector can properly redeem. They were
developed as a new built-in module that provides these interfaces:

ifetch get a module’s instructions

tdesc get a module’s type descriptors

newmod create a new module

tnew create a new type descriptor

link create a new module link

ext install links

dnew create module data

compile just in time compile a module

Several alternatives to this scheme were considered. The first was incorporating
a Java virtual machine into Inferno. This was rejected not only because it
would increase the size of the system by too much but because it would also
result in too many duplicated sub-systems. There would be two virtual
machines, two garbage collectors and two sets of just in time compilers.
Getting them to all cooperate would be a challenge.

Another idea that was considered, was the creation of a hybrid virtual machine
that could execute either Dis instructions or Java byte codes. Although this

-- --

would not increase the size of the system by as much, it was would still make it
much larger. Furthermore, since the two machines would now be integrated
that cost would always have to be incurred, even when the Java functionality
was not needed. The Java functionality could not be easily loaded only when it
was needed.

Finally, we considered using Inferno’s network capabilities and transparently
use a "java server" in the network as if it is a local resource. This can be done,
and in situations where there is sufficient bandwidth (for example, cable
systems) can be the appropriate solution. But, as stated above, often there may
only be a 56K connection into the device. If the application is graphics
intensive this will not be enough. Also such a system does not scale well, so a
solution that can also execute Java byte codes directly on the edge device needs
to be also provided.

During this effort several problems encountered. The first was Java’s "class
spaghetti". We discovered that Java’s system classes are not at all hierarchical.
If you select any basic class and find all the classes it references, and find all
those classes recursively, you will find yourself referencing every class in the
system. This required us to abandon the idea of speeding execution by
completely resolving the class when it is loaded. Instead the resolution is done
during execution, resolving only what is needed.

A second problem is that translated text size of the .dis code that is the output
of j2d process is larger than the .class code that was its input. This is because
j2d does not have as much information available to it from the .class files as the
Java compiler had at its disposal from the .java files. The best that j2d can do
is one-to-one and the code can grow by as much as 100%. An alternative
would be to provide a Java compiler that produced Dis instructions directly,
instead of producing Java byte code, but that only helps if the Java source code
is available, often only the class files will be. It turns out that for most Java
programs running on Inferno this is not a problem because the total memory
footprint required to execute the Java program including not only the program
text itself but all supporting operating system and virtual machine code is
smaller using Inferno than it would be using another operating system and its
virtual machine. For a sufficiently large Java program this would not be the
case. How large the Java program has to be depends on how small the
alternative system is, but it is on the order of several megabytes of class file
text.

This system does not execute finalization routines. In general, this is not a
problem because most of the functionality that the programmer might put in a
finalization routine, such as closing open files is finessed by the garbage
collector, the Inferno operating system takes care of them. Also the
programmer cannot according to the Java language specification depend upon
the finalization routine being executed at any specific point in time. The

-- --

specification is nebulous enough in this respect that its letter if not its spirit can
be met without ever executing these routines.

4. Results

The implementation that we selected resulted in a system that has the following
characteristics:

• Kernel text size was increased by less than 11 Kbytes. This includes all the
code for the new instructions and the new module built-in into the kernel.
This adds less than 2% to the size of an Inferno kernel.

• Text space for the modules required to run Java on Inferno: j2d, the loader
and assisting modules is just 176 Kbytes. This is distributed as follows:

105K bytes for the Java to Dis translator

41K bytes for the loader

3K bytes dis assembly language utilities

27K bytes miscellaneous

This 176K of code encompasses the functionality of about a megabyte of
DLL or shared libraries. Several factors are responsible for this dramatic
decrease in size. First, the Dis instructions are more concise than native
machine code. In general Dis instructions sequences are a third the size of
the corresponding native code. Second Limbo is an efficient language in
which to develop an application like this. Third, doing this work on
Inferno, allows the leveraging of much of the Inferno functionality. For
example, the Inferno virtual machine and garbage collector can be used. A
virtual machine or garbage collector need not be rewritten. This is
significant savings.

If some local storage exists, using 176K of be practical in many situations
where using several megabytes to store the shared libraries or DLLs would
not be.

• Through the use of the Inferno namespace none of these modules need be
resident on the small device. If hardware does not have this amount of
local storage the modules can be remote but bound into the namespace of
the application and be treated as if they are local. Of course, something
analogous could be attempted through NFS, by mounting a remote file
system that contains the Java virtual machine and its shared libraries and
system classes. If your small device is also bandwidth poor using NFS
would not be practical. Downloading the Java virtual machine, across a
33Kbit per second link, when you want to run a Java application would take
too long. But downloading the entire 176K, even at that speed, is possible.

-- --

Of course it might not be possible to fit the code for NFS onto the device in
the first place (whereas Inferno has its networking code built into it).

Furthermore, because Limbo modules are only loaded when the execution
path of the program first requires them, often much of the 176K need not be
loaded at all.

The same can be done for any pre-translated core system classes that are
stored as .dis files. The entire contents of the classes.zip file need not
traverse the link but only the classes that are used.

Also since the Inferno namespace allows disjoint hierarchies to be unioned
into a single private hierarchy, some important classes can be local why
others are in the network. Since the application, here the Java program,
never sees the network, the distribution of what is where can vary between
platforms, or even between executions on the same platform without
requiring any change in the application.

• Both Limbo and Java allow modules to be "just in time" compiled on the
target hardware. This jitting translates the machine independent codes into
native machine instructions just before the code is executed. The goal of
this late stage compiling is to maintain the portability of the code without
incurring all the speed disadvantage of interpreted code. Jitting has two
disadvantages: it increases the text size by a factor of about three and it
incurs the execution time cost of the translation to native instructions. If the
translated code is to be repeatedly executed this tradeoff may be worth it.
Originally jitting Java code was an all or nothing decision, either the virtual
machine compiled all the code it ran or none of it. More recently "hotspot"
jitting has been proposed in which the virtual machine attempts to determine
which pieces are most worthy of compiling. This scheme promises to
address the all or nothing problem but further complicates and increases the
size of the Java virtual machine. Inferno, in contrast, has always allowed
the application module developer three choices on a per module basis:

1. always compile the module,

2. never compile the module, or

3. let the virtual machine take its default. (The VM’s default is an
execution time option.)

These choices allow the developer to indicate to the system, considering
speed and size constraints, exactly which modules should be compiled.

• Inferno has a hybrid garbage collecting algorithm that reference counts most
data. [6] A background concurrent and incremental mark and sweep
collector recovers any cyclic data that cannot be collected by reference
counting. [7] This has several advantageous over stop the world memory
recovery. Most important to us here is that on average less memory is

-- --

needed since it is recovered as soon as it goes out of scope instead of
having to wait for the next epoch.

Inferno is small even with the additional code for Java. Here is the size of
Inferno operating system on several different platforms:

processor text data bss total (bytes)_ ___
386 466593 86944 62020 615557

arm 955168 99920 54200 1109288

sparc 911304 96496 45128 1052928

These numbers vary some with what device drivers are present, but these are
typical values for actual systems.

The amount of memory, beyond that needed for the OS and virtual machine,
required to run the application varies greatly with the application. But a
growing number of small Inferno enabled devices have been built. From these
we can see how much memory typical applications on Inferno require. These
Inferno devices run as video-on-demand set top boxes, web browsing set top
boxes, screen phones and network computers. They have between 2 and 8 meg
of RAM. Running Java on them requires at least 8 megabytes, but for Java that
is small. Tiny Java applications can use that much user space, without
considering all the memory for the operating system support that they require.
(For example, a minimally equipped Javastation, a sparc, comes with 32 Meg of
memory.)

As stated at the beginning of this paper there are always tradeoffs. This design
attempts to minimize memory usage and maximize portability. It runs on sparc,
x86, arm and other processors. It runs on screen phones with as little as a total
of 8 Megabytes of RAM. An implementation targeted for a specific processor
and with no memory limit can always be made to out perform a system
designed to run everywhere in limited memory. Here are some benchmarks for
this system. As always mileage will vary, but to examine the performance of
the system we used Pendragon’s Embedded Caffeinemark 3.0 [8] This
benchmark is widely accepted as a measure of Java speed and is readily
available on the web. It uses six sub-tests to quantify aspects of the Java
virtual machine speed. The following is a brief description of each sub-test:

1. A sieve of Eratosthenes finds prime numbers.

2. The loop test measures compiler optimized loops.

3. The logic test tests the speed of decision making instructions.

4. The string test manipulates strings.

5. A float test simulates a 3D rotation around a point. And

-- --

6. The method tests recursive function call speed.

The following two tables show results for several specific platforms.

The first column of the first table is for a screen phone equipped with a 200
MHz strongARM processor, 8 megabytes of RAM and 2 megabytes of flash
memory that appears as a disk. (In these tables larger values are better.)

Table 1 Inferno Caffeinemarks

screen phone set top box
Sieve score 83 22
Loop score 80 20
Logic score 80 58
String score 45 3
Float score 13 0
Method score 67 7
Overall score 329 0

The results for the screen phone running Inferno, are no where near the best
Caffeinemarks in the world, but for a machine with just 8 megabytes of ram
and 2 meg of flash they are impressive.

It would be interesting to compare these results with published reports of other
Java virtual machines running on similar platforms. But such data does not yet
exist.

For comparison, the first column second table column shows the results of the
same test on a 200 megahertz Pentium running Javasoft’s version 1.1.4 and the
second column shows the results on the same machine running Inferno with the
jit enabled.

Table 2 Pentium Caffeinemarks

Javasoft jvm Inferno
Sieve score 364 679
Loop score 278 992
Logic score 343 2676
String score 533 48
Float score 298 222
Method score 315 266
Overall score 346 415

-- --

As you can see Inferno’s speed here is slightly better than Javasoft’s JVM.

As a more extremely limited example, the second column of the first table
contains the results on a set-top (web-browsing) box equiped with a 40 MHz
386 with 8 megabytes of memory, 8 megabyte of flash and a 28.8 hardware
modem.

In this case the low score on the float test makes the overall score zero, but it is
unlikely that another JVM would do better on this platform. The Pendragon
web site that publishes the Caffeinemark results does not list any results for a
386 processor. This example shows that by using Inferno, Java can be executed
even on extremely limited platforms.

5. Summary

The Inferno operating system is designed to allow distributed network
applications to be easily developed and efficiently run on small devices. By
taking advantage of Inferno’s features we were able to develop a Java
implementation that can run on small devices. This scheme is not the fastest
Java engine but it is small both statically and dynamically. This allows Java to
be used in places where it otherwise could not be.

References

1. Gosling: The Feel of Java. Computer IEEE V30, 6 (1997) 53-&

2. Dorward, Pike, Presotto et al.: Inferno. Proceedings IEEE COMPCOM
(1997)

3. Dorward, Pike, Winterbottom: Programming in Limbo. Proceeding IEEE
COMPCOM (1997)

4. Vazquez: Selecting A Software Development Process. Communications
of the ACM (1994)

5. http://www.javasoft.com/products/personaljava/spec-1-0-
0/personalJavaSpec.ht

6. Richard E. Jones and Rafel D. Lins: Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. Wiley (1996)

7. Kafura, Mukherji and Washabaugh: Concurrent and Distributed Garbage
Collection of Active Objects. IEEE Transactions on Parallel and
Distributed Systems Vol 6. No 4 (1995)

8. http://www.pendragon-software.com/pendragon/cm3/index.html

-- --

