
3
3
The Inferno Environment
Introduction 3

This section provides an overview of working with Inferno in a hosted
environment. Inferno can be set to run three distinct environments:

■ The standard Inferno shell, which is always present when the emulator is
running, provides a basic command interpreter similar to the various Unix
shells or a DOS window. When Inferno is first invoked, the shell is
presented as a console window.

■ The mux application provides a demonstration environment that is meant
to simulate services that might be provided using Inferno as the operating
system for a set-top box.

■ The wm application provides a demonstration environment similar to a
traditional window manager.

In addition, the Limbo compiler, the Limbo debugger and the process of
developing Limbo applications are described. For more information about the
language, see The Limbo Programming Language. For information about the
compiler, including command line options, see the limbo(1) man page.

Running the Inferno Emulator 3

The Inferno emulator, an application named emu, is invoked to establish the
Inferno environment as a process under the host operating system. After start-up,
this environment is identical to the Inferno native environment.
(Issue β.2 9/1/96) 3- 1

The Inferno Environment
The procedures in this section assume that Inferno has been installed following
the procedures described in Installation and Setup.

The Inferno File Name Space 3

The Inferno file system conforms to a set of conventions that promote the
flexibility of name space manipulation. These conventions should be adhered to
for the system to behave normally. After installation the Inferno file system under
<inferno_root> is arranged as follows:

/ The Inferno root directory.

appl Top level directory containing Limbo source code for various
demonstration applications.

chan Location for writing channel control files (empty).

dev Location for writing device control files. Contains a file,
NVRAM, used in set-top box simulations.

dis Location of Dis programs. Subdirectories group specific
application executables: for example, dis/mux contains all
programs used by the mux application; dis/lib contains
standard library executables such as srv. The dis directory is
on the Inferno search path by default.

fonts Location of font files.

httpcache Location of temporary storage for browser files.

icons Location of raster graphics files.

keydb Location of signer-related files.

lib Location of collections of data generally not part of programs.

locale Location of time zone localization files.

man Location of documentation PDF and HTML formats.

module Location of module files for Limbo programs.

movies Location of files used in mux application.

n Location of network-related directories and files.

net Location of network-related directories and files for all
available network devices.

<os_path> /bin Platform-specific directory containing system executables. For
example, under Windows, <os_path> is
<inferno_root>\Nt\386.

prog Location of thread-related control files.
3-2 (Issue β.2 9/1/96)

The Inferno Environment
Starting the Inferno shell 3

The Inferno shell is the starting point for all operations involving Inferno in a
hosted environment. The shell is always present when the emulator is running
and provides a basic command interpreter similar. When Inferno is first invoked
under Windows, the shell is presented as a separate console window. Under
Unix, the shell is a child process in the terminal window in which the emulator was
invoked.

To start the Inferno shell 3

Requirement:On a Unix server, the emulator must be run as root; on a
Unix client, the emulator must be run as a process owned
by user inferno. In the Windows NT environment, the
Inferno file system must be open. That is, Full Control must
be granted to Everyone.

1. The location of the emulator executable is referred to as <emu_bin>.
Some default values are shown below. These can be added to your
$PATH environment variable.

2. Under Unix, open a terminal window and enter the following command:

<emu_bin>/emu

3. Under Windows NT, double click on the emulator icon in the Inferno pro-
gram group. Under Windows 95, select
Start>>Programs>>Lucent Inferno>>Emulator .

Response: An Inferno console window is displayed running the Inferno
command interpreter.

Comment: A variety of options are available for the emu command that
allow you to customize the appearance of the emu window
and control compilation options, paths and the like. These

services Location of service related directories and files.

usr Location of user home directories.

System Default <emu_bin>

Solaris <inferno_root>/Solaris/sparc/bin

Irix <inferno_root>/Irix/mips/bin

Windows <inferno_root>\Nt\386\bin
(Issue β.2 9/1/96) 3- 3

The Inferno Environment
options are described in the emu(1) man page. If you start
the shell using a Windows icon or desktop shortcut, you can
add emu options to the icon properties.

NOTE:
In the Inferno console window, a path should use the forward slash as in
Unix. Do not use the backslash as in the DOS/Windows environment.

Starting the Inferno window manager 3

Starting the Inferno window manager does not require a server and does not
establish an authenticated connection. At the conclusion of this procedure, you
can use the window manager in isolation. You cannot connect to remote servers
and you cannot simulate authenticated connections. However, you can write and
compile Limbo programs and use many of the demonstration programs that are
provided with the Inferno distribution.

To log on the Inferno window manager 3

1. Start the Inferno shell.

2. In the Inferno console window, establish an initial environment by invok-
ing the following commands:

bind '#I' /net
lib/cs
wm/logon

Requirement:The single quotes surrounding the #I device in the bind
command are required. If they are omitted, the shell consid-
ers all text after the pound sign to be a comment.

NOTE:
Under Windows the Inferno window manager is initially iconified. To view
the window manager, click on the Inferno icon in the Windows 95 task bar
or on the Windows NT desktop.

Comment: The bind command sets up a local network environment in
preparation for connection to a server.
The cs application provides connection services.
The logon application starts the window manager.

Response: The first time a user logs on, a license form is displayed.
Accepting the license agreement prevents the form from
3-4 (Issue β.2 9/1/96)

The Inferno Environment
being displayed again. The Logon dialog box is then dis-
played.

Figure 3-1. Logon Dialog Box

3. Enter a user name in the User Name: field.

Requirement:The user name entered must correspond to a valid user and
a directory name in <inferno_root>/usr located on the server
and the local machine.

Comment: The window manager reads configuration information from
two files in the user directory. The content and format of
these files, namespace and wmsetup, are described in Set-
ting Up a Custom User Environment.
(Issue β.2 9/1/96) 3- 5

The Inferno Environment
When logon is complete, the window manager appears as a clear screen with the
Inferno icon displayed at the lower left of the main window.

Figure 3-2. The Inferno Window Manager in the Microsoft Windows
Environment With Multiple Windows Displayed

The Inferno window manager is now running. For more information about the wm
user interface, see The Inferno Window Manager.

Connecting to the network 3

The procedures in this section assume that a server running the srv application is
available to client machines attempting to use the network.

NOTE:
If you wish to run Inferno using authenticated connections on a single
machine in loopback fashion, you can use the procedures in this section on
one local machine running two instances of Inferno. It is necessary,
however, that the single machine be initialized as a signer prior to
attempting to establish authenticated connections.

Inferno is meant to be used as part of a network. The machine designated as
signer, which acts as the connection authentication server, must be initialized
before any authentications can be established. The initialization consists of
ensuring that the signer is running the srv application.
3-6 (Issue β.2 9/1/96)

The Inferno Environment
To initialize the signer 3

NOTE:
Before any user can establish an authenticated connection, a user account
exist on the signer machine. See the procedure To create an Inferno
account on a signer machine.

1. Start the Inferno shell on the signer machine.

2. In the Inferno console window on the signer machine, run the srv applica-
tion:

lib/srv

The signer is now ready to authenticate connections between clients and servers
in the network.

To establish an authenticated connection 3

1. Start the Inferno shell on the client machine.

2. Log on to the Inferno window manager.

3. In the Inferno window manager, follow the menu path Inferno>>remote
to display the Remote Connect dialog box.

Figure 3-3. Remote Connect Dialog Box

4. Enter a machine name to connect to in the form <net>!<machine>.

NOTE:
In the current release, TCP is the only network protocol supported. That is,
<net> is always tcp in this release. The <machine> value should be the
node name of the machine to connect to, not its IP address.
(Issue β.2 9/1/96) 3- 7

The Inferno Environment
5. Select the level of security that is desired for the connection and press the
Enter key.

Comment: The authenticate selection validates each connection in the
network.
The authenticate and SHA hash selection validates each
connection and affixes a digital signature to each message.
The authenticate and RC4 encrypt selection validates each
connection and encrypts each message.

Exiting from Inferno 3

Response: In the Unix environment, the Inferno shell is invoked and the
$ prompt is displayed. In the Windows NT environment, an
Inferno console window is displayed. Under Windows 95, an
inferno console window is displayed and the window man-
ager is started as an icon on the Windows task bar.

To exit from Inferno 3

1. Press Ctrl+C in the Inferno console window.

Response: The emulator is terminated.

NOTE:
Exiting from Inferno while the window manager or mux applications are
running will kill those applications.

The Inferno Shell 3

The Inferno shell provides a basic set of commands that can be used directly in
the Inferno console window. Most commands are implemented as independent
Limbo programs; the source code for these programs resides in the
<inferno_root>/appl/cmd directory. The corresponding executable .dis files are
located in <inferno_root>/dis. The behavior of these commands can be modified
by changing the Limbo source and recompiling the programs.

The Limbo shell is a “blank slate” environment in which you can experiment with
the construction of name spaces using mount and bind commands. For example,
issuing the typical bind command

bind '#I' /net
3-8 (Issue β.2 9/1/96)

The Inferno Environment
prepends the local IP device to the devices directory. This ensures that the local
protocol stack and network interfaces are used to establish new connections
instead of those of the server.

NOTE:
In the Inferno console window, a path should use the forward slash as in
Unix. Do not use the backslash as in the DOS/Windows environment.

The Inferno shell can also be accessed from within the window manager. See The
Inferno Window Manager.

Shell Commands Quick Reference 3

The following table lists the basic commands that are supported by the Inferno
shell. These commands generally mimic the well-known Unix variants. More
complete information is presented in the man pages, included in The Manual
Pages.

bind [-abcr] <old> <new> Modifies the local name space, creating
another name <new> for an existing file
<old> . For directories, the options are:
-a to place <new> after <old>
-b to place <new> before <old>
-c to create a union of <old> and <new>
-r to replace <old> with <new>

cat [fn ...] Output the contents of a file or files to the
standard output:
cat fn lists fn to stdout
cat fn > fn2 lists fn to fn2
cat fn fn2 > fn3 concatenates fn and
fn2 into fn3

cd <directory> Changes the current working directory to
<directory>

chmod [augo][+-=][rwx]
chmod 777 file

Changes Inferno file mode (access
permissions). Read <r>, write <w>, or
execution <x> permissions can be added
<+>, removed <->, or assigned <=> for the
owner <u>, the owner’s group <g>, all others
<o>, or all <a>. Octal values are also
allowed.
(Issue β.2 9/1/96) 3- 9

The Inferno Environment
cmp [-lsL] <f1> <f2> [off1] [off2] Compare files <f1> and <f2> starting at
offsets off1 and off2, respectively (default 0).
No output if files are identical. The options:
-s silent mode, no output messages
-L suppress line number message
-l further suppress offset message

cp <old> <new> Copies file <old> to file <new>

date Prints the date

du [-anst] [file ...] Print disk usage in specified files and
directories. The options are:
-a show count per file
-n use netlib format
-s print sum per directory
-t use terse report format

echo <text> Prints <text> to stdout

grep [-lnv] <pattern> [file...] Output lines of file(s) that match <pattern>.
The options are:
-l to just print file names, not lines.
-n to include line numbers
-v to output lines that don’t match <pattern>

kill [-g] <pid|module> Aborts the process identified as <pid> or all
processes running <module>. The option,
-g terminates entire process group.

ls [–lpqdtusr] [file|directory] Lists the files in a directory. Options are:
-l verbose output
-p list only final element of path names
-q list qid with file
-d list only directories
-t sort by time last modified
-u sort by last access
-s sort by size
-r sort in reverse order

mathcalc Makes the calculator facilities of TKlib
available from the command line.

mkdir <directory ...> Creates a directory
3-10 (Issue β.2 9/1/96)

The Inferno Environment
mount [-abcrA] <old> <new> Modifies the name space by attaching
resource from <old> to directory <new>. The
options are:
-a to place <new> after <old>
-b to place <new> before <old>
-c to create a union of <old> and <new>
-r to replace <old> with <new>
-A to authenticate the connection

netstat Prints the status of TCP and UDP network
connections

nsbuild <nsfile> Builds name space per <nsfile> contents.

os <command [args...]> Executes <command> in the host operating
system

ps Lists information about currently running
processes

pwd Prints the current working directory

rm [file|directory...] Remove named file(s) or (empty) directories.

sh [file] Invokes the shell as a child of the current
shell. Commands taken from file, if specified;
else, from standard input.

sleep [duration] Suspends execution for the number of
seconds specified in <duration>

stack [-v] <pid> Prints the contents of the stack for the named
<pid> to stdout. The -v option prints a
verbose version.

unmount <old>
unmount <new> <old>

Undoes the effect of a mount or bind. If
<new> is unspecified, everything bound to
<old> is unmounted.

wc [-lwrbc] [file ...] Counts items in the specified UTF-text files,
if any, else from stdin. The options are;
-l count lines
-w count words
-r count runes
-b count bad runes encountered
-c count characters (bytes)

wish [file ...] Invokes a Tcl-like command shell. Directives
in specified files, if any, are executed, then
commands taken from standard input.
(Issue β.2 9/1/96) 3- 11

The Inferno Environment
The Mux Demonstration Application 3

The Inferno operating system can be used to provide an environment for a variety
of hardware. The mux application simulates the implementation of a range of
services on a set-top box controlled by an infrared device. In the demo
application, the keyboard is used instead of an IR device.

NOTE:
Individual application programs in the <inferno_root>/mux directory should
not be executed except from within the mux demonstration application.

To start the mux application 3

1. Start the Inferno emulator.

NOTE:
On a Unix server, the emulator must be run as root; on a Unix client, the
emulator must be run as a process owned by user inferno. In the Windows
environment, admin access is necessary.

NOTE:
In the Unix environment, the location of the emulator executable is referred
to as <emu_bin>. Under Solaris, <emu_bin> is by default
<inferno_root>/Solaris/sparc/bin; under Irix, <emu_bin> is by default
<inferno_root>/Irix/mips/bin. The complete path may be added to your
PATH environment variable.

2. From an Inferno console window, change directory to <inferno_root> and
issue the following the command:

mux/mux

Response: The mux application window is displayed

NOTE:
The window is initially iconified. To view the mux window, click on the
Inferno icon in the Windows 95 task bar or on the Windows NT desktop.
3-12 (Issue β.2 9/1/96)

The Inferno Environment
Navigating the mux application 3

The keys that the mux application uses to simulate the IR device are:

The mux application demonstrates the following services:

■ Financial Reports: adds a stock quote ticker to the bottom of the mux
window

■ Movies: allows the selection of a specific movie from a list and provides
information about the selection

■ Today’s Newspaper: displays a list of simulated newspapers in multiple
languages and allows reading of specific articles

■ Grit Bath Comics: displays some comic strips

■ TV Information: provides a schedule of television programs

■ Order Pizza: allows selection of food and processes orders

■ Internet Mail: simulates an email facility

■ Internet Web Browser: simulates a menu-driven web browser

■ Register: simulates a set-top registration process

■ Audio Control: allows audio control of the set-top box

The Inferno Window Manager 3

Inferno provides a basic window manager environment that demonstrates many
of the graphic capabilities of Inferno applications developed using the Limbo
programming language. Included by default as menu options are:

■ About: a standard about box

■ Media Players: various programs to display multimedia files, including
Coffee (a simple animation), Viewer (a bitmap viewer), and players for
MPEG, AVI and QuickTime files

■ Applications: including a fully functional text editor, an HTML browser, and
applications to send and read email

m or down arrow Move down the menu

i or up arrow Move up the menu

Enter Select a menu item

x Bring the menu to the front

Spacebar Kill the current menu selection
(Issue β.2 9/1/96) 3- 13

The Inferno Environment
■ System: several applications designed to help in Limbo program
development, including a system task manager, the Limbo debugger and a
Limbo module manager

■ Local: a file manager application for the local machine

■ Remote: a file manager application for remote connections

■ Tasks: a system task manager

■ Notepad: a fully functional text editor

■ Shell: a command line interpreter window

Setting Up a Custom User Environment 3

When the Inferno emulator window manager is invoked, the namespace and
wmsetup files are read to provide a configuration for the machine similar to a
.profile configuration file in the Unix K shell or an autoexec.bat file in Windows.
These are simple ASCII text files that can be freely edited to provide a customized
environment for each user.

The Name Space File 3

The namespace file contains a set of mount and bind commands that provide a
specific custom view of network resources. Edit this file to provide transparent
access to any available resources in the network. Minimally, this file must contain
the following line:

bind -ia #C /

NOTE:
Single quotes surrounding the device identifier in the bind command are not
required because the namespace file is not run by the shell.

The wmsetup File 3

The wmsetup file is read during logon in order to configure the window manager
main menu. The default main menu can be augmented to list any Inferno
application by editing the wmsetup file in a user’s home directory. Menu items can
be grouped as sets of related items on a submenu. The default main menu can be
modified by changing the wm.b file and recompiling it.

wmsetup File Format 3

The format for the wmsetup file is:

<main_menu>:<menu_text>:<command>
3-14 (Issue β.2 9/1/96)

The Inferno Environment
The <main_menu> column specifies the word(s) that appears on the main menu.
The <menu_text> column specifies the word(s) that appears on the cascaded
submenu. The <command> specified the application that is to be invoked. Spaces
are allowed between colons, for example:

Applications:Text Editor:/appl/wm/wmedit.dis

The Limbo Development Process 3

The development of Limbo applications proceeds in a fashion similar to other
development environments. A brief Limbo tutorial written by B. Kernighan that is
designed to supplement this section is available for downloading from the Inferno
web site at:

http://www.lucent.com/inferno/

Source Code Compilation 3

The Limbo compiler is a machine dependent program that is run under the native
operating system. The compiler executable is located in <inferno_bin>: under
windows it is named limbo.exe, under Unix it is named limbo. The compiler
translates Limbo source code files into binary files, conventionally given the
extension .dis.

The object files that are output from the Limbo compiler are machine independent
programs that run under Dis. Depending on the options selected, invoking the
compiler with the command

limbo [option ...] [file ...]

produces either output files or information to the standard output device. The
compiler options control the form and type of output. Conventional files and their
extensions include the following:

These conventions are not enforced by the compiler. The compiler options and
their definitions are described in The Manual Pages.

filename.b Limbo source code file

filename.sbl Debugging information

filename.m Limbo source file for module declarations and include
statements

filename.dis Byte code file executed by the interpreter

filename.s Assembly code
(Issue β.2 9/1/96) 3- 15

The Inferno Environment
The Limbo Debugger 3

Before you can begin debugging there are several concerns to be addressed.

■ To operate on an existing program the debugger needs information that is
not provided by the usual compilation of source code. You must compile
the program with a special option.

■ You must be able to locate and start the debugger.

■ You must be able to specify the program of interest to the debugger. That
might be either a currently running program or one that will be explicitly
started by the debugger.

Compilation for Debugging 3

To debug a program under development, invoke the Limbo compiler with the
command line option -g . This option directs the compiler to generate additional
information needed by the debugger.

The following files are needed by the debugger to act on a program.

For example, in a Windows cross development environment, the steps might be:

C:>dir getopt.* /w
getopt.b
C:>limbo -g getopt.b
C:>dir getopt.* /w
getopt.b getopt.dis getopt.sbl
C:>

filename.b Limbo source code

filename.dis Compiled Dis code

filename.sbl Additional (line number) information.
3-16 (Issue β.2 9/1/96)

The Inferno Environment
Starting the Debugger 3

The debugger is a graphical application that is run from the Inferno window
manager.

Figure 4. The Limbo Debugger Windows

To start the Limbo debugger 4

1. From the Inferno icon, follow the menu path Inferno>>System>>Limbo
Debugger .

2. When the debugger starts two windows are created, one for program con-
trol, and the other for the display of stack information (Figure 4).

The Debugger Control Window 4

You can control the debugger by clicking on the various icons found on the
display. At any time, you can determine which actions are valid by passing the
cursor over them. The valid buttons are highlighted. Initially, only the File button
(to choose a program for debugging) is valid.

The File Menu Item 4

The File menu item is used to select the program for debugging. That program
can be:

■ A currently running thread selected via File>>Threads . A thread can also
be selected via Inferno>>Shell>>Task Manager .
(Issue β.2 9/1/96) 3- 17

The Inferno Environment
■ A newly created thread running the program selected via File>>Open .

Figure 5. Sample File>>Options Usage

The File Menu Options 5

The following options are available on the File menu:

Open... A file-tree browser to locate program source for debugging.

Threads... A list of currently running threads with columns for process (thread)
id, process group id, process state, and the name of the currently
running module

Button:
Add Thread

Start debugger for the selected thread.

Button:
Add Group

Start debugger for the selected thread (process)
group.

Options... General
Options

Input Field:
executable module

Radio Button:
wm program

input Field:
Program arguments

Input Field:
Working Directory

Thread
Options

Radio Buttons:
Block new threads (default)
Run new threads

Radio Buttons
Kill threads on exit (default)
Detach threads on exit
3-18 (Issue β.2 9/1/96)

The Inferno Environment
The Select Menu Item 5

The Select option provides navigation through the source file opened via the File
option. The Select option provides two actions

Debugger Control Icons 5

Cancel Icon: Terminate thread

Cancel Icon: Terminate thread.

Smile Icon: Detach thread.

Green Light Icon: Run thread.

Step by expression.

Step by statement.

Step past function calls (do not step into function).

Step to end of function. This is especially useful if you unintentionally
step the debugger into a function.

Stop Sign Icon: Set/Unset break point

Running the Debugger 5

After choosing a program to debug via the File menu, clicking on the Green Light
icon makes the debugger run the previously selected program. By default, the
program breaks at the first executable statement.

Look Find the next occurrence in the file of the current search string.

Search for Prompt for a search string (via a dialogue box) and find the
next occurrence. That string is then displayed in the Select
menu as the current search string for Look operations.
(Issue β.2 9/1/96) 3- 19

The Inferno Environment
NOTE:
This default behavior can be suppressed by engaging the radio button
Run new threads under File>>Options...>>Thread .

You can advance the execution by one expression at a time, by one statement at
a time, or by other options pictured in Debugger Control Icons. Alternatively, you
can set break points in the code and run the program until a breakpoint is
encountered in the execution. In each case, the code that has caused the
debugger to stop program execution appear highlighted in the code display panel.

Stepping through Function Evaluations 5

When stepping through a program one expression at a time, there are several
interesting stages when a function call is encountered.

■ First, the entire function statement is highlighted. This represents the
allocation of the stack fame for the function.

■ Next, the debugger stops and highlights each of the function arguments as
each is evaluated.

■ Finally, the debugger highlights the entire function statement again to
represent the actual calling of the function with the computed arguments.

BreakPoints 5

To set a breakpoint 5

1. Click on the Stop Sign icon.

2. Select the code that should cause the break.

3. Click on the Stop Sign icon.

Response: The code of interest will be displayed in red thereafter. Also,
the number of the newly created breakpoint is entered in the
panel labelled Breakpoints .

To unset a breakpoint 5

1. Select the code of interest.

Response: The code section is highlighted.

2. Click on the Stop Sign.
3-20 (Issue β.2 9/1/96)

The Inferno Environment
Response: The code resumes its normal display color and the associ-
ated breakpoint number is removed from the Breakpoints
panel.

Terminating a Program 5

There is an implicit breakpoint at the end of every program (as there was at the
first executable statement). This allows you an opportunity to examine the final
state of the computation.

To proceed further, the program must be terminated by pressing the Cancel Icon.
Afterwards, you can (if appropriate) restart the program by clicking on the Green
Light icon.

By default, all other threads created by the debugged program will be terminated
upon exit. This default behavior can be suppressed by setting the switch for
Detach thread on exit under File>>Options>>Thread Options . If set, those
threads continue execution.

The Debugger Stack Window 5

The Stack window is divided into two panels. The left panel is used to select which
information to display and the right displays the contents.

Initially, the various parts of the name space (locals, modules, etc.) are
represented by icons in the “closed” state.

When clicked the icons will be expanded into further details (e.g.,
various local variable names) and their current values will be displayed
on the corresponding line in the right panel.

Figure 6. Sample View of the Stack Window
(Issue β.2 9/1/96) 3- 21

The Inferno Environment
3-22 (Issue β.2 9/1/96)

	The Inferno Environment
	Introduction
	Running the Inferno Emulator
	The Inferno File Name Space
	Starting the Inferno shell
	To start the Inferno shell
	1. The location of the emulator executable is refe...
	2. Under Unix, open a terminal window and enter th...
	3. Under Windows NT, double click on the emulator ...

	Starting the Inferno window manager
	To log on the Inferno window manager
	1. Start the Inferno shell.
	2. In the Inferno console window, establish an ini...
	Figure�3�1.� Logon Dialog Box

	3. Enter a user name in the User Name: field.
	Figure�3�2.� The Inferno Window Manager in the Mic...

	Connecting to the network
	To initialize the signer
	1. Start the Inferno shell on the signer machine.
	2. In the Inferno console window on the signer mac...

	To establish an authenticated connection
	1. Start the Inferno shell on the client machine.
	2. Log on to the Inferno window manager.
	3. In the Inferno window manager, follow the menu ...
	Figure�3�3.� Remote Connect Dialog Box

	4. Enter a machine name to connect to in the form ...
	5. Select the level of security that is desired fo...

	Exiting from Inferno
	To exit from Inferno
	1. Press Ctrl+C in the Inferno console window.

	The Inferno Shell
	Shell Commands Quick Reference

	The Mux Demonstration Application
	To start the mux application
	1. Start the Inferno emulator.
	2. From an Inferno console window, change director...

	Navigating the mux application

	The Inferno Window Manager
	Setting Up a Custom User Environment
	The Name Space File
	The wmsetup File
	wmsetup File Format

	The Limbo Development Process
	Source Code Compilation
	The Limbo Debugger
	Compilation for Debugging
	Starting the Debugger
	Figure 4. The Limbo Debugger Windows

	To start the Limbo debugger
	1. From the Inferno icon, follow the menu path Inf...
	2. When the debugger starts two windows are create...

	The Debugger Control Window
	The File Menu Item
	Figure 5. Sample File>>Options Usage

	The File Menu Options
	The Select Menu Item
	Debugger Control Icons
	Running the Debugger
	Stepping through Function Evaluations
	BreakPoints
	To set a breakpoint
	1. Click on the Stop Sign icon.
	2. Select the code that should cause the break.
	3. Click on the Stop Sign icon.

	To unset a breakpoint
	1. Select the code of interest.
	2. Click on the Stop Sign.

	Terminating a Program
	The Debugger Stack Window
	Figure 6. Sample View of the Stack Window

